These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 14031)
1. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. Skulachev VP FEBS Lett; 1977 Feb; 74(1):1-9. PubMed ID: 14031 [No Abstract] [Full Text] [Related]
2. Mechanisms of energy transformations. Racker E Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035 [No Abstract] [Full Text] [Related]
3. [Mechanism of oxidative phosphorylation and general principles of bioenergetics]. Skulachev VP Usp Sovrem Biol; 1974 Mar; 77(2):125-54. PubMed ID: 4152071 [No Abstract] [Full Text] [Related]
4. The energetics of bacterial active transport. Simoni RD; Postma PW Annu Rev Biochem; 1975; 44():523-54. PubMed ID: 237462 [No Abstract] [Full Text] [Related]
5. Mechanism of oxidative phosphorylation. Slater EC Annu Rev Biochem; 1977; 46():1015-26. PubMed ID: 20036 [No Abstract] [Full Text] [Related]
6. Membrane structure in relation to function of energy-transducing organelles. Packer L Ann N Y Acad Sci; 1974 Feb; 227():166-74. PubMed ID: 4275117 [No Abstract] [Full Text] [Related]
7. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571 [No Abstract] [Full Text] [Related]
8. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation. Ernster L Annu Rev Biochem; 1977; 46():981-95. PubMed ID: 20042 [No Abstract] [Full Text] [Related]
9. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. Mitchell P FEBS Lett; 1975 Feb; 50(2):95-7. PubMed ID: 234404 [No Abstract] [Full Text] [Related]
11. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
12. [Adenosine triphosphate and the hydrogen ion transmembrane potential--2 convertible and transportable forms of energy in the living cell]. Skulachev VP Usp Sovrem Biol; 1977; 84(2):165-75. PubMed ID: 23618 [No Abstract] [Full Text] [Related]
13. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Kell DB Biochim Biophys Acta; 1979 Jul; 549(1):55-99. PubMed ID: 38839 [No Abstract] [Full Text] [Related]
14. Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Lehninger AL Circ Res; 1974 Sep; 35 Suppl 3():83-90. PubMed ID: 4606316 [No Abstract] [Full Text] [Related]
16. Membrane electricity as a convertible energy currency for the cell. Skulachev VP Can J Biochem; 1980 Mar; 58(3):161-75. PubMed ID: 6245772 [TBL] [Abstract][Full Text] [Related]
17. Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria. Hatefi Y; Hanstein WG Biochemistry; 1973 Aug; 12(18):3515-22. PubMed ID: 4147216 [No Abstract] [Full Text] [Related]