These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 1403824)
1. Ectopic activity in demyelinated spinal root axons of the rat. Baker M; Bostock H J Physiol; 1992; 451():539-52. PubMed ID: 1403824 [TBL] [Abstract][Full Text] [Related]
2. Slow sodium-dependent potential oscillations contribute to ectopic firing in mammalian demyelinated axons. Kapoor R; Li YG; Smith KJ Brain; 1997 Apr; 120 ( Pt 4)():647-52. PubMed ID: 9153126 [TBL] [Abstract][Full Text] [Related]
3. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. Bostock H; Grafe P J Physiol; 1985 Aug; 365():239-57. PubMed ID: 4032313 [TBL] [Abstract][Full Text] [Related]
4. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. Baker M; Bostock H; Grafe P; Martius P J Physiol; 1987 Feb; 383():45-67. PubMed ID: 2443652 [TBL] [Abstract][Full Text] [Related]
5. A mechanism for ectopic firing in central demyelinated axons. Felts PA; Kapoor R; Smith KJ Brain; 1995 Oct; 118 ( Pt 5)():1225-31. PubMed ID: 7496782 [TBL] [Abstract][Full Text] [Related]
6. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. Bostock H; Sears TA J Physiol; 1978 Jul; 280():273-301. PubMed ID: 690876 [TBL] [Abstract][Full Text] [Related]
7. Internodal conduction in undissected demyelinated nerve fibres. Rasminsky M; Sears TA J Physiol; 1972 Dec; 227(2):323-50. PubMed ID: 4647244 [TBL] [Abstract][Full Text] [Related]
8. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. Bostock H; Sears TA; Sherratt RM J Physiol; 1981; 313():301-15. PubMed ID: 7277221 [TBL] [Abstract][Full Text] [Related]
9. A voltage- and time-dependent rectification in rat dorsal spinal root axons. Birch BD; Kocsis JD; Di Gregorio F; Bhisitkul RB; Waxman SG J Neurophysiol; 1991 Sep; 66(3):719-28. PubMed ID: 1661325 [TBL] [Abstract][Full Text] [Related]
10. Different voltage-dependent potassium conductances regulate action potential repolarization and excitability in frog myelinated axon. Poulter MO; Padjen AL Neuroscience; 1995 Sep; 68(2):497-504. PubMed ID: 7477960 [TBL] [Abstract][Full Text] [Related]
11. Depolarization changes the mechanism of accommodation in rat and human motor axons. Baker M; Bostock H J Physiol; 1989 Apr; 411():545-61. PubMed ID: 2614732 [TBL] [Abstract][Full Text] [Related]
12. Involvement of hyperpolarization-activated, cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain. Wan Y Sheng Li Xue Bao; 2008 Oct; 60(5):579-80. PubMed ID: 18958363 [TBL] [Abstract][Full Text] [Related]
13. Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers. Bowe CM; Kocsis JD; Targ EF; Waxman SG Ann Neurol; 1987 Aug; 22(2):264-8. PubMed ID: 2821876 [TBL] [Abstract][Full Text] [Related]
14. Hyperglycaemic hypoxia alters after-potential and fast K+ conductance of rat axons by cytoplasmic acidification. Schneider U; Quasthoff S; Mitrović N; Grafe P J Physiol; 1993 Jun; 465():679-97. PubMed ID: 8229857 [TBL] [Abstract][Full Text] [Related]
15. Potassium channel blockade differentially affects the relative refractory period of frog afferent terminals and axons. Tkacs NC; Wurster RD Cell Mol Neurobiol; 1990 Sep; 10(3):405-21. PubMed ID: 2253263 [TBL] [Abstract][Full Text] [Related]
16. Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. Matzner O; Devor M J Neurophysiol; 1994 Jul; 72(1):349-59. PubMed ID: 7965019 [TBL] [Abstract][Full Text] [Related]
17. Differential inhibition of glial K(+) currents by 4-AP. Bordey A; Sontheimer H J Neurophysiol; 1999 Dec; 82(6):3476-87. PubMed ID: 10601476 [TBL] [Abstract][Full Text] [Related]