These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 1403826)

  • 1. Effect of perfusion pressure on force of contraction in thin papillary muscles and trabeculae from rat heart.
    Schouten VJ; Allaart CP; Westerhof N
    J Physiol; 1992; 451():585-604. PubMed ID: 1403826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reoxygenated effluent of Tyrode-perfused heart affects papillary muscle contraction independent of cardiac perfusion.
    Dijkman MA; Heslinga JW; Allaart CP; Sipkema P; Westerhof N
    Cardiovasc Res; 1997 Jan; 33(1):45-53. PubMed ID: 9059527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.
    Dijkman MA; Heslinga JW; Sipkema P; Westerhof N
    Am J Physiol; 1998 Feb; 274(2):H405-10. PubMed ID: 9486241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of length and contraction on coronary perfusion in isolated perfused papillary muscle of rat heart.
    Allaart CP; Westerhof N
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H447-54. PubMed ID: 8770083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of the cardiac contractile force on the coronary perfusion pressure: difference between the isovolumic hearts of rat and guinea pig.
    Kapelko VI; Khatkevich AN
    Cardioscience; 1995 Mar; 6(1):25-30. PubMed ID: 7605893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of perfusion pressure on diastolic stress-strain relations of isolated rat papillary muscle.
    Allaart CP; Sipkema P; Westerhof N
    Am J Physiol; 1995 Mar; 268(3 Pt 2):H945-54. PubMed ID: 7900893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of isoproterenol on the mechanical activity of isolated papillary muscles and perfused rat hearts in various calcium concentrations.
    Vassallo DV; Lima EQ; Campagnaro P; Stefanon I; Leite CM; Mill JG
    Pharmacol Res; 1994 Apr; 29(3):251-60. PubMed ID: 8058596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left ventricular mechanoenergetics under altered coronary perfusion in guinea pig hearts.
    Matsushita T; Takaki M; Fujii W; Matsubara H; Suga H
    Jpn J Physiol; 1995; 45(6):991-1004. PubMed ID: 8676582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force-frequency relationship in rat myocardium. The influence of muscle dimensions.
    Schouten VJ; ter Keurs HE
    Pflugers Arch; 1986 Jul; 407(1):14-7. PubMed ID: 3737379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms.
    Lamberts RR; Van Rijen MH; Sipkema P; Fransen P; Sys SU; Westerhof N
    Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1515-22. PubMed ID: 12234804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of 'diastolic' length on the contractility of isolated cat papillary muscle.
    Nichols CG
    J Physiol; 1985 Apr; 361():269-79. PubMed ID: 3989728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CGP 41251, a new potential anticancer drug, improves contractility of rat isolated cardiac muscle subjected to hypoxia.
    Kocic I; Dworakowska D; Dworakowski R; Petrusewicz J
    J Cardiovasc Pharmacol; 2001 Jun; 37(6):734-41. PubMed ID: 11392470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of contraction, perfusion pressure, and length on intramyocardial pressure in rat papillary muscle.
    Heslinga JW; Allaart CP; Yin FC; Westerhof N
    Am J Physiol; 1997 May; 272(5 Pt 2):H2320-6. PubMed ID: 9176301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differing effects of inotropic agents on length change deactivation of isolated rat myocardium.
    Leach JK; Ford LE; Perea JM; Grimes LA; Skipper BJ
    J Investig Med; 2002 Jan; 50(1):61-6. PubMed ID: 11813830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shortening deactivation of cardiac muscle: physiological mechanisms and clinical implications.
    Leach JK; Priola DV; Grimes LA; Skipper BJ
    J Investig Med; 1999 Sep; 47(8):369-77. PubMed ID: 10510589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle.
    Lakatta EG; Lappé DL
    J Physiol; 1981 Jun; 315():369-94. PubMed ID: 7310715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between Gregg's phenomenon and coronary flow control: a model study.
    Dankelman J; Stassen HG; Spaan JA
    Med Biol Eng Comput; 1999 Nov; 37(6):742-9. PubMed ID: 10723882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac endothelial cells modulate contractility of rat heart in response to oxygen tension and coronary flow.
    Ramaciotti C; McClellan G; Sharkey A; Rose D; Weisberg A; Winegrad S
    Circ Res; 1993 May; 72(5):1044-64. PubMed ID: 8477519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramyocardial pressure measurements in the isolated perfused papillary muscle of rat heart.
    Heslinga JW; Allaart CP; Westerhof N
    Eur J Morphol; 1996; 34(1):55-62. PubMed ID: 8743099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diastolic stress-strain relation of nonexcised blood-perfused canine papillary muscle.
    Kitabatake A; Suga H
    Am J Physiol; 1978 Apr; 234(4):H416-20. PubMed ID: 645881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.