BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14040658)

  • 1. A chemiluminescence (CL) of phenazine methosulfate (PMS) in the presence of hydrogen peroxide (HOOH) induced by reductants including reduced nicotinamide adenine dinucleotide (NADH) and ascorbic acid (AA).
    CHAYET C; STEELE RH; BRECKINRIDGE BS
    Biochem Biophys Res Commun; 1963 Mar; 10():390-5. PubMed ID: 14040658
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydroxylation of aromatic compounds by reduced nicotinamide-adenine dinucleotide and phenazine methosulphate requires hydrogen peroxide and hydroxyl radicals, but not superoxide.
    Halliwell B
    Biochem J; 1977 Oct; 167(1):317-20. PubMed ID: 201248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A partial kinetic analysis of the chemiluminescence (CL) of phenazine methosulfate (PMS).
    STEELE RH; BRECKINRIDGE BS
    Biochem Biophys Res Commun; 1963 Mar; 10():396-400. PubMed ID: 13983575
    [No Abstract]   [Full Text] [Related]  

  • 4. The involvement of superoxide anions in the nitro blue tetrazolium chloride reduction mediated by NADH and phenazine methosulfate.
    Van Noorden CJ; Butcher RG
    Anal Biochem; 1989 Jan; 176(1):170-4. PubMed ID: 2540673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of 5-methylphenazinium methyl sulfate. Reaction of the oxidized form with NADH and of the reduced form with oxygen.
    Halaka FG; Babcock GT; Dye JL
    J Biol Chem; 1982 Feb; 257(3):1458-61. PubMed ID: 7056726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium.
    Picker SD; Fridovich I
    Arch Biochem Biophys; 1984 Jan; 228(1):155-8. PubMed ID: 6320732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis.
    Bisschop A; Bergsma J; Konings WN
    Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate.
    Ponti V; Dianzani MU; Cheeseman K; Slater TF
    Chem Biol Interact; 1978 Dec; 23(3):281-91. PubMed ID: 214250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives.
    Davis G; Thornalley PJ
    Biochim Biophys Acta; 1983 Sep; 724(3):456-64. PubMed ID: 6311259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the phenazine methosulphate--tetrazolium salt capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. III. The role of superoxide in tetrazolium reduction.
    Raap AK
    Histochem J; 1983 Oct; 15(10):977-86. PubMed ID: 6315642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenazine methosulfate stimulation of ouabain-sensitive Rb+ uptake by HeLa cells: effects of respiratory inhibitors, anaerobiosis, and ascorbate.
    Ikehara T; Yamaguchi H; Hosokawa K; Kaku M; Miyamoto H
    J Cell Biochem; 1985; 28(4):273-80. PubMed ID: 4055918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TITRATION OF CYTOCHROME C OXIDASE WITH NADH AND PHENAZINE METHOSULPHATE.
    VAN GELDERB ; SLATER EC
    Biochim Biophys Acta; 1963 Aug; 73():663-5. PubMed ID: 14074145
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemiluminescence assay for tetrahydrobiopterin based on the generation of hydrogen peroxide using isoluminol-microperoxidase in the presence of 1-methoxy PMS.
    Arakawa H; Masuda K; Tajima N; Maeda M
    Luminescence; 2007; 22(3):245-50. PubMed ID: 17285567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the phenazine methosulphate-tetrazolium capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. II. A novel hypothesis for the mode of action of PMS and a study of the properties of reduced PMS.
    Raap AK; Van Duijn P
    Histochem J; 1983 Sep; 15(9):881-93. PubMed ID: 6629853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPECTROSCOPIC CHARACTERISTICS AND SOME CHEMICAL PROPERTIES OF N-METHYLPHENAZINIUM METHYL SULFATE (PHENAZINE METHOSULFATE) AND PYOCYANINE AT THE SEMIQUIDNOID OXIDATION LEVEL.
    ZAUGG WS
    J Biol Chem; 1964 Nov; 239():3964-70. PubMed ID: 14257632
    [No Abstract]   [Full Text] [Related]  

  • 16. Some rate constants for the phenazine methosulphate-catalysed oxidation of reduced nicotinamide-adenine dinucleotide.
    Ottaway JH
    Biochem J; 1966 Apr; 99(1):253-6. PubMed ID: 4290552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrous iron transport in Streptococcus mutans.
    Evans SL; Arceneaux JE; Byers BR; Martin ME; Aranha H
    J Bacteriol; 1986 Dec; 168(3):1096-9. PubMed ID: 2946662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical bioreactor with regeneration of NAD+ by rotating graphite disk electrode with PMS adsorbed.
    Miyawaki O; Yano T
    Enzyme Microb Technol; 1992 Jun; 14(6):474-8. PubMed ID: 1368798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HISTOCHEMICAL STUDIES OF LEUKOCYTES FROM AN INFLAMMATORY EXUDATE. VI. DEMONSTRATION OF NON-DIAPHORASE-COUPLED DEHYDROGENASE ACTIVITY USING PHENAZINE METHOSULPHATE.
    WULFF HR
    Acta Haematol; 1964 Jul; 32():17-26. PubMed ID: 14204453
    [No Abstract]   [Full Text] [Related]  

  • 20. 1-Methoxy-5-methylphenazinium methyl sulfate. A photochemically stable electron mediator between NADH and various electron acceptors.
    Hisada R; Yagi T
    J Biochem; 1977 Nov; 82(5):1469-73. PubMed ID: 201613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.