These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14042743)

  • 21. The spherical aberration of intra-ocular lenses.
    Smith G; Lu CW
    Ophthalmic Physiol Opt; 1988; 8(3):287-94. PubMed ID: 3269508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.
    Amigó A; Martinez-Sorribes P; Recuerda M
    J Refract Surg; 2017 Jul; 33(7):470-474. PubMed ID: 28681906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring ocular aberrations with a schematic human eye model.
    Smith G; Bedggood P; Ashman R; Daaboul M; Metha A
    Optom Vis Sci; 2008 May; 85(5):330-40. PubMed ID: 18451737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The optical properties of the crystalline lens and their significance.
    Smith G
    Clin Exp Optom; 2003 Jan; 86(1):3-18. PubMed ID: 12568647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.
    Liu T; Thibos LN
    Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of spherical and other aberrations upon the modulation transfer of the defocussed human eye.
    Jansonius NM; Kooijman AC
    Ophthalmic Physiol Opt; 1998 Nov; 18(6):504-13. PubMed ID: 10070545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Image formation by a concave reflector in the eye of the scallop, Pecten maximus.
    Land MF
    J Physiol; 1965 Jul; 179(1):138-53. PubMed ID: 5854374
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical development in the zebrafish eye lens.
    Wang K; Vorontsova I; Hoshino M; Uesugi K; Yagi N; Hall JE; Schilling TF; Pierscionek BK
    FASEB J; 2020 Apr; 34(4):5552-5562. PubMed ID: 32103543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The under-corrected lens of the frog eye (Rana esculenta) could yield comparable aerial and underwater vision.
    Rivamonte A
    Vision Res; 1977; 17(10):1237-8. PubMed ID: 304271
    [No Abstract]   [Full Text] [Related]  

  • 32. Optics of aberroscopy and super vision.
    Applegate RA; Thibos LN; Hilmantel G
    J Cataract Refract Surg; 2001 Jul; 27(7):1093-107. PubMed ID: 11489582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Some effects of a decentered crystalline lens.
    Davis JK; Fernald HG
    J Am Optom Assoc; 1968 Dec; 39(12):1100-2. PubMed ID: 5705516
    [No Abstract]   [Full Text] [Related]  

  • 35. Entoptic halos.
    Mellerio J; Palmer DA
    Vision Res; 1970 Jul; 10(7):595-9. PubMed ID: 5491508
    [No Abstract]   [Full Text] [Related]  

  • 36. Micrometric Control of the Optics of the Human Eye: Environment or Genes?
    Tabernero J; Hervella L; Benito A; Colodro-Conde L; Ordoñana JR; Ruiz-Sanchez M; Marín JM; Artal P
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):1964-1970. PubMed ID: 28384718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wide-angle optical model of the eye.
    Pomerantzeff O; Pankratov M; Wang GJ; Dufault P
    Am J Optom Physiol Opt; 1984 Mar; 61(3):166-76. PubMed ID: 6720862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide angle optical model of the human eye.
    Pomerantzeff O; Fish H; Govignon J; Schepens CL
    Ann Ophthalmol; 1971 Aug; 3(8):815-9. PubMed ID: 5163774
    [No Abstract]   [Full Text] [Related]  

  • 39. Optical modulation by the isolated human fovea.
    Ozu H; Enoch JM
    Vision Res; 1972 Feb; 12(2):245-51. PubMed ID: 5033687
    [No Abstract]   [Full Text] [Related]  

  • 40. OCULAR CHANGES ASSOCIATED WITH LONG-TERM CHLORPROMAZINE THERAPY.
    DELONG SL; POLEY BJ; MCFARLANE JR
    Arch Ophthalmol; 1965 May; 73():611-7. PubMed ID: 14281974
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.