These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 1404364)
1. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. Brierley I; Jenner AJ; Inglis SC J Mol Biol; 1992 Sep; 227(2):463-79. PubMed ID: 1404364 [TBL] [Abstract][Full Text] [Related]
2. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. Brierley I; Meredith MR; Bloys AJ; Hagervall TG J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. Brierley I; Rolley NJ; Jenner AJ; Inglis SC J Mol Biol; 1991 Aug; 220(4):889-902. PubMed ID: 1880803 [TBL] [Abstract][Full Text] [Related]
4. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Brierley I; Digard P; Inglis SC Cell; 1989 May; 57(4):537-47. PubMed ID: 2720781 [TBL] [Abstract][Full Text] [Related]
6. Identification and analysis of the site of -1 ribosomal frameshifting in red clover necrotic mosaic virus. Kim KH; Lommel SA Virology; 1994 May; 200(2):574-82. PubMed ID: 8178444 [TBL] [Abstract][Full Text] [Related]
7. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus. Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113 [TBL] [Abstract][Full Text] [Related]
8. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Kontos H; Napthine S; Brierley I Mol Cell Biol; 2001 Dec; 21(24):8657-70. PubMed ID: 11713298 [TBL] [Abstract][Full Text] [Related]
9. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Chamorro M; Parkin N; Varmus HE Proc Natl Acad Sci U S A; 1992 Jan; 89(2):713-7. PubMed ID: 1309954 [TBL] [Abstract][Full Text] [Related]
10. Ribosomal pausing during translation of an RNA pseudoknot. Somogyi P; Jenner AJ; Brierley I; Inglis SC Mol Cell Biol; 1993 Nov; 13(11):6931-40. PubMed ID: 8413285 [TBL] [Abstract][Full Text] [Related]
11. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Morikawa S; Bishop DH Virology; 1992 Feb; 186(2):389-97. PubMed ID: 1310175 [TBL] [Abstract][Full Text] [Related]
12. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
13. Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. ten Dam E; Brierley I; Inglis S; Pleij C Nucleic Acids Res; 1994 Jun; 22(12):2304-10. PubMed ID: 8036158 [TBL] [Abstract][Full Text] [Related]
14. The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Gramstat A; Prüfer D; Rohde W Nucleic Acids Res; 1994 Sep; 22(19):3911-7. PubMed ID: 7937111 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986 [TBL] [Abstract][Full Text] [Related]
16. The Q-base of asparaginyl-tRNA is dispensable for efficient -1 ribosomal frameshifting in eukaryotes. Marczinke B; Hagervall T; Brierley I J Mol Biol; 2000 Jan; 295(2):179-91. PubMed ID: 10623518 [TBL] [Abstract][Full Text] [Related]
17. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Su MC; Chang CT; Chu CH; Tsai CH; Chang KY Nucleic Acids Res; 2005; 33(13):4265-75. PubMed ID: 16055920 [TBL] [Abstract][Full Text] [Related]
18. Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus. Tzeng TH; Tu CL; Bruenn JA J Virol; 1992 Feb; 66(2):999-1006. PubMed ID: 1731118 [TBL] [Abstract][Full Text] [Related]
19. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178 [TBL] [Abstract][Full Text] [Related]
20. Characterization of RNA elements that regulate gag-pol ribosomal frameshifting in equine infectious anemia virus. Chen C; Montelaro RC J Virol; 2003 Oct; 77(19):10280-7. PubMed ID: 12970412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]