These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 1404595)
1. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. Engelman A; Craigie R J Virol; 1992 Nov; 66(11):6361-9. PubMed ID: 1404595 [TBL] [Abstract][Full Text] [Related]
2. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. Vincent KA; Ellison V; Chow SA; Brown PO J Virol; 1993 Jan; 67(1):425-37. PubMed ID: 8416376 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. Leavitt AD; Shiue L; Varmus HE J Biol Chem; 1993 Jan; 268(3):2113-9. PubMed ID: 8420982 [TBL] [Abstract][Full Text] [Related]
4. Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding. Bushman FD; Wang B J Virol; 1994 Apr; 68(4):2215-23. PubMed ID: 8139006 [TBL] [Abstract][Full Text] [Related]
5. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases. Katzman M; Sudol M J Virol; 1995 Sep; 69(9):5687-96. PubMed ID: 7637015 [TBL] [Abstract][Full Text] [Related]
6. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. Vink C; Oude Groeneger AM; Plasterk RH Nucleic Acids Res; 1993 Mar; 21(6):1419-25. PubMed ID: 8464733 [TBL] [Abstract][Full Text] [Related]
7. Conserved residues Pro-109 and Asp-116 are required for interaction of the human immunodeficiency virus type 1 integrase protein with its viral DNA substrate. Drelich M; Haenggi M; Mous J J Virol; 1993 Aug; 67(8):5041-4. PubMed ID: 8392628 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. Pahl A; Flügel RM J Biol Chem; 1995 Feb; 270(7):2957-66. PubMed ID: 7852375 [TBL] [Abstract][Full Text] [Related]
9. Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Jenkins TM; Hickman AB; Dyda F; Ghirlando R; Davies DR; Craigie R Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6057-61. PubMed ID: 7597080 [TBL] [Abstract][Full Text] [Related]
10. Role of the His-Cys finger of Moloney murine leukemia virus integrase protein in integration and disintegration. Jonsson CB; Roth MJ J Virol; 1993 Sep; 67(9):5562-71. PubMed ID: 8350412 [TBL] [Abstract][Full Text] [Related]
11. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. Masuda T; Planelles V; Krogstad P; Chen IS J Virol; 1995 Nov; 69(11):6687-96. PubMed ID: 7474078 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of the integrase protein of human immunodeficiency virus type 2. van Gent DC; Groeneger AA; Plasterk RH Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9598-602. PubMed ID: 1409671 [TBL] [Abstract][Full Text] [Related]
13. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. LaFemina RL; Schneider CL; Robbins HL; Callahan PL; LeGrow K; Roth E; Schleif WA; Emini EA J Virol; 1992 Dec; 66(12):7414-9. PubMed ID: 1433523 [TBL] [Abstract][Full Text] [Related]
14. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer. Ellison V; Gerton J; Vincent KA; Brown PO J Biol Chem; 1995 Feb; 270(7):3320-6. PubMed ID: 7852418 [TBL] [Abstract][Full Text] [Related]
15. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Bushman FD; Engelman A; Palmer I; Wingfield P; Craigie R Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3428-32. PubMed ID: 8386373 [TBL] [Abstract][Full Text] [Related]
16. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Kulkosky J; Jones KS; Katz RA; Mack JP; Skalka AM Mol Cell Biol; 1992 May; 12(5):2331-8. PubMed ID: 1314954 [TBL] [Abstract][Full Text] [Related]
17. Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration. Taddeo B; Haseltine WA; Farnet CM J Virol; 1994 Dec; 68(12):8401-5. PubMed ID: 7966634 [TBL] [Abstract][Full Text] [Related]
18. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. Leavitt AD; Rose RB; Varmus HE J Virol; 1992 Apr; 66(4):2359-68. PubMed ID: 1548767 [TBL] [Abstract][Full Text] [Related]
19. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. Wiskerchen M; Muesing MA J Virol; 1995 Jan; 69(1):376-86. PubMed ID: 7983732 [TBL] [Abstract][Full Text] [Related]
20. Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues. Cannon PM; Wilson W; Byles E; Kingsman SM; Kingsman AJ J Virol; 1994 Aug; 68(8):4768-75. PubMed ID: 8035478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]