These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1405572)

  • 1. Blood lactate, glycerol and catecholamine in arm strokes, leg kicks and whole crawl strokes.
    Ohkuwa T; Itoh H
    J Sports Med Phys Fitness; 1992 Mar; 32(1):32-8. PubMed ID: 1405572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of swim speed on leg-to-arm coordination in unilateral arm amputee front crawl swimmers.
    Osborough C; Daly D; Payton C
    J Sports Sci; 2015; 33(14):1523-31. PubMed ID: 25562689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying freestyle kick-count and kick-rate patterns in Paralympic swimming.
    Fulton SK; Pyne DB; Burkett B
    J Sports Sci; 2009 Nov; 27(13):1455-61. PubMed ID: 19787541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in kinematics and arm-leg coordination during a 100-m breaststroke swim.
    Oxford SW; James RS; Price MJ; Payton CJ; Duncan MJ
    J Sports Sci; 2017 Aug; 35(16):1658-1665. PubMed ID: 27636684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate and cardiopulmonary responses to simulated arm-pulling and leg-kicking in collegiate and recreational swimmers.
    Konstantaki M; Swaine IL
    Int J Sports Med; 1999 Feb; 20(2):118-21. PubMed ID: 10190773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiopulmonary responses to exercise in swimmer using a swim bench and a leg-kicking ergometer.
    Swaine IL
    Int J Sports Med; 1997 Jul; 18(5):359-62. PubMed ID: 9298776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate.
    Wakayoshi K; Yoshida T; Ikuta Y; Mutoh Y; Miyashita M
    Int J Sports Med; 1993 Oct; 14(7):368-72. PubMed ID: 8244602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VO2 Kinetics in All-out Arm Stroke, Leg Kick and Whole Stroke Front Crawl 100-m Swimming.
    Rodríguez FA; Lätt E; Jürimäe J; Maestu J; Purge P; Rämson R; Haljaste K; Keskinen KL; Jürimäe T
    Int J Sports Med; 2016 Mar; 37(3):191-6. PubMed ID: 26575404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in sympathoadrenal, hormonal, and metabolic adaptation to submaximal and maximal arm and leg work compared with whole stroke in breast-style swimming.
    Weiss M; Pollert R; Stehle R; Weicker H
    Int J Sports Med; 1988 Aug; 9 Suppl 2():S118-24. PubMed ID: 3053473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming.
    Morouço PG; Marinho DA; Izquierdo M; Neiva H; Marques MC
    Biomed Res Int; 2015; 2015():563206. PubMed ID: 26539511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic responses to drafting during front crawl swimming.
    Bassett DR; Flohr J; Duey WJ; Howley ET; Pein RL
    Med Sci Sports Exerc; 1991 Jun; 23(6):744-7. PubMed ID: 1886484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of muscle fatigue during 100-m front crawl.
    Stirn I; Jarm T; Kapus V; Strojnik V
    Eur J Appl Physiol; 2011 Jan; 111(1):101-13. PubMed ID: 20824283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reduced training on muscular strength and endurance in competitive swimmers.
    Neufer PD; Costill DL; Fielding RA; Flynn MG; Kirwan JP
    Med Sci Sports Exerc; 1987 Oct; 19(5):486-90. PubMed ID: 3683154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming.
    Deschodt VJ; Arsac LM; Rouard AH
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):192-9. PubMed ID: 10453920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.
    Collard L; Oboeuf A
    Percept Mot Skills; 2009 Apr; 108(2):491-8. PubMed ID: 19544953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise.
    Ahlborg G; Wahren J; Felig P
    J Clin Invest; 1986 Mar; 77(3):690-9. PubMed ID: 3512600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-limb coordination and energy cost in swimming.
    Seifert L; Komar J; Crettenand F; Dadashi F; Aminian K; Millet GP
    J Sci Med Sport; 2014 Jul; 17(4):439-44. PubMed ID: 23932428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming.
    Wakayoshi K; D'Acquisto LJ; Cappaert JM; Troup JP
    Int J Sports Med; 1995 Jan; 16(1):19-23. PubMed ID: 7713625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm and leg power output in swimmers during simulated swimming.
    Swaine IL
    Med Sci Sports Exerc; 2000 Jul; 32(7):1288-92. PubMed ID: 10912895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender.
    Seifert L; Boulesteix L; Chollet D; Vilas-Boas JP
    Hum Mov Sci; 2008 Feb; 27(1):96-111. PubMed ID: 17935810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.