BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1405730)

  • 1. An in vitro preparation of the mudpuppy for simultaneous intracellular and electromyographic recording during locomotion.
    Wheatley M; Stein RB
    J Neurosci Methods; 1992 Apr; 42(1-2):129-37. PubMed ID: 1405730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of interneurons during locomotion in the in vitro necturus spinal cord.
    Wheatley M; Jovanović K; Stein RB; Lawson V
    J Neurophysiol; 1994 Jun; 71(6):2025-32. PubMed ID: 7931500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Jovanovic K; Aoyagi Y; Bennett DJ; Han Y; Stein RB
    Exp Brain Res; 2002 Jul; 145(2):190-8. PubMed ID: 12110959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of intact and in-vitro locomotion in an adult amphibian.
    Wheatley M; Edamura M; Stein RB
    Exp Brain Res; 1992; 88(3):609-14. PubMed ID: 1587318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonergic modulation of the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Greer JJ; Stein RB
    Exp Brain Res; 1996 Sep; 111(1):57-67. PubMed ID: 8891637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).
    Fok M; Stein RB
    Exp Brain Res; 2002 Aug; 145(4):498-504. PubMed ID: 12172661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord.
    Parker D; Grillner S
    J Neurophysiol; 1996 Dec; 76(6):4031-9. PubMed ID: 8985898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of interneurons mediating reciprocal 1a inhibition during locomotion.
    Feldman AG; Orlovsky GN
    Brain Res; 1975 Feb; 84(2):181-94. PubMed ID: 1111829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation.
    Giraudin A; Cabirol-Pol MJ; Simmers J; Morin D
    J Neurophysiol; 2008 May; 99(5):2626-40. PubMed ID: 18337363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion.
    Schmidt BJ; Meyers DE; Fleshman JW; Tokuriki M; Burke RE
    Exp Brain Res; 1988; 71(3):568-78. PubMed ID: 3416970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent Input Induced by Rhythmic Limb Movement Modulates Spinal Neuronal Circuits in an Innovative Robotic In Vitro Preparation.
    Dingu N; Deumens R; Taccola G
    Neuroscience; 2018 Dec; 394():44-59. PubMed ID: 30342198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Stein RB; Jovanović K; Yoshida K; Bennett DJ; Han Y
    J Neurosci; 1998 Jun; 18(11):4295-304. PubMed ID: 9592106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central modulation of stretch receptor neurons during fictive locomotion in lamprey.
    Vinay L; Barthe JY; Grillner S
    J Neurophysiol; 1996 Aug; 76(2):1224-35. PubMed ID: 8871232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor-related presynaptic modulation of primary afferents in the lamprey.
    El Manira A; Tegnér J; Grillner S
    Eur J Neurosci; 1997 Apr; 9(4):696-705. PubMed ID: 9153576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey.
    Perlmutter SI; Maier MA; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2475-94. PubMed ID: 9819257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response patterns and postspike effects of premotor neurons in cervical spinal cord of behaving monkeys.
    Fetz EE; Perlmutter SI; Maier MA; Flament D; Fortier PA
    Can J Physiol Pharmacol; 1996 Apr; 74(4):531-46. PubMed ID: 8828898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat.
    Edgley SA; Jankowska E; Shefchyk S
    J Physiol; 1988 Sep; 403():57-71. PubMed ID: 3150984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish.
    Le Ray D; Cattaert D
    J Neurophysiol; 1997 Apr; 77(4):1963-78. PubMed ID: 9114248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.