These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1405736)

  • 1. Separation of synaptic and spike activity in intracellular recordings for selective analysis.
    Hedwig B; Knepper M
    J Neurosci Methods; 1992 Apr; 42(1-2):83-90. PubMed ID: 1405736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike timing and synaptic dynamics at the awake thalamocortical synapse.
    Swadlow HA; Bezdudnaya T; Gusev AG
    Prog Brain Res; 2005; 149():91-105. PubMed ID: 16226579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
    Andreasen M; Lambert JD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):441-62. PubMed ID: 9518704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of electrotonic structure and synaptic mapping on the receptive field properties of a collision-detecting neuron.
    Peron SP; Krapp HG; Gabbiani F
    J Neurophysiol; 2007 Jan; 97(1):159-77. PubMed ID: 17021031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig.
    Clerc N; Furness JB; Bornstein JC; Kunze WA
    Neuroscience; 1998 Feb; 82(3):899-914. PubMed ID: 9483544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons.
    Ogawa H; Mitani R
    Biochem Biophys Res Commun; 2015 Nov; 467(2):185-90. PubMed ID: 26456645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
    Mellon D
    J Neurophysiol; 2003 Oct; 90(4):2465-77. PubMed ID: 12789014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coding with spike shapes and graded potentials in cortical networks.
    Juusola M; Robinson HP; de Polavieja GG
    Bioessays; 2007 Feb; 29(2):178-87. PubMed ID: 17226812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial localization of synapses required for supralinear summation of action potentials and EPSPs.
    Urakubo H; Aihara T; Kuroda S; Watanabe M; Kondo S
    J Comput Neurosci; 2004; 16(3):251-65. PubMed ID: 15114049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dendritic gain control mechanism in axonless neurons of the locust, Schistocerca americana.
    Laurent G
    J Physiol; 1993 Oct; 470():45-54. PubMed ID: 8308737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic excitability and a voltage-gated calcium current in locust nonspiking local interneurons.
    Laurent G; Seymour-Laurent KJ; Johnson K
    J Neurophysiol; 1993 May; 69(5):1484-98. PubMed ID: 8389826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2002 Oct; 53(1):44-56. PubMed ID: 12360582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABA(A) receptor ligands.
    Pawelzik H; Hughes DI; Thomson AM
    J Physiol; 2003 Feb; 546(Pt 3):701-16. PubMed ID: 12562998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus.
    Wong RK; Stewart M
    J Physiol; 1992 Nov; 457():675-87. PubMed ID: 1297848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons.
    Rien D; Kern R; Kurtz R
    Eur J Neurosci; 2011 Sep; 34(5):705-16. PubMed ID: 21819463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of GABAergic synaptic terminals on the dendrites of locust spiking local interneurones.
    Leitch B; Laurent G
    J Comp Neurol; 1993 Nov; 337(3):461-70. PubMed ID: 8282852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.