These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1406583)

  • 1. Translational readthrough at nonsense mutations in the HSF1 gene of Saccharomyces cerevisiae.
    Kopczynski JB; Raff AC; Bonner JJ
    Mol Gen Genet; 1992 Sep; 234(3):369-78. PubMed ID: 1406583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant.
    Halladay JT; Craig EA
    Mol Cell Biol; 1995 Sep; 15(9):4890-7. PubMed ID: 7651408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of Saccharomyces cerevisiae chromosome I. On the number of genes and the identification of essential genes using temperature-sensitive-lethal mutations.
    Harris SD; Cheng J; Pugh TA; Pringle JR
    J Mol Biol; 1992 May; 225(1):53-65. PubMed ID: 1583694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast.
    Yuan CX; Czarnecka-Verner E; Gurley WB
    Cell Stress Chaperones; 1997 Dec; 2(4):263-75. PubMed ID: 9495283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes.
    Stansfield I; Akhmaloka ; Tuite MF
    Curr Genet; 1995 Apr; 27(5):417-26. PubMed ID: 7586027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSI3, a multicopy suppressor of mutants hyperactivated in the RAS-cAMP pathway, encodes a novel HSP70 protein of Saccharomyces cerevisiae.
    Shirayama M; Kawakami K; Matsui Y; Tanaka K; Toh-e A
    Mol Gen Genet; 1993 Sep; 240(3):323-32. PubMed ID: 8413180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of a sec63 mutation identifies a novel component of the yeast endoplasmic reticulum translocation apparatus.
    Kurihara T; Silver P
    Mol Biol Cell; 1993 Sep; 4(9):919-30. PubMed ID: 8257794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities.
    Yamamoto A; Sakurai H
    Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the beta subunit of eukaryotic translation initiation factor 2.
    Castilho-Valavicius B; Thompson GM; Donahue TF
    Gene Expr; 1992; 2(3):297-309. PubMed ID: 1450666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of efficiency of translation termination in Saccharomyces cerevisiae.
    Nizhnikov AA; Antonets KS; Inge-Vechtomov SG; Derkatch IL
    Prion; 2014; 8(3):247-60. PubMed ID: 25486049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of yeast RNA polymerase III mutations by the URP2 gene encoding a protein homologous to the mammalian ribosomal protein S20.
    Hermann-Le Denmat S; Sipiczki M; Thuriaux P
    J Mol Biol; 1994 Jul; 240(1):1-7. PubMed ID: 8021936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic identification of the site of DNA contact in the yeast heat shock transcription factor.
    Torres FA; Bonner JJ
    Mol Cell Biol; 1995 Sep; 15(9):5063-70. PubMed ID: 7651423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel FK506- and rapamycin-binding protein (FPR3 gene product) in the yeast Saccharomyces cerevisiae is a proline rotamase localized to the nucleolus.
    Benton BM; Zang JH; Thorner J
    J Cell Biol; 1994 Nov; 127(3):623-39. PubMed ID: 7525596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1.
    Leberer E; Dignard D; Harcus D; Hougan L; Whiteway M; Thomas DY
    Mol Gen Genet; 1993 Nov; 241(3-4):241-54. PubMed ID: 8246877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 70-kDa heat shock cognate protein suppresses the defects caused by a proteasome mutation in Saccharomyces cerevisiae.
    Ohba M
    FEBS Lett; 1994 Sep; 351(2):263-6. PubMed ID: 8082777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.