These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14066422)

  • 21. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids.
    Buono F; Testa R; Lundgren DG
    J Bacteriol; 1966 Jun; 91(6):2291-9. PubMed ID: 4957615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores.
    Behravan J; Chirakkal H; Masson A; Moir A
    J Bacteriol; 2000 Apr; 182(7):1987-94. PubMed ID: 10715007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical analyses of asporogenic mutants of Bacillus cereus.
    LUNDGREN DG; COONEY JJ
    J Bacteriol; 1962 Jun; 83(6):1287-93. PubMed ID: 14467380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium.
    de Vries YP; Atmadja RD; Hornstra LM; de Vos WM; Abee T
    Appl Environ Microbiol; 2005 Jun; 71(6):3248-54. PubMed ID: 15933027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ultrasonic waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores.
    Burgos J; Ordóñez JA; Sala F
    Appl Microbiol; 1972 Sep; 24(3):497-8. PubMed ID: 4627969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance.
    Loshon CA; Wahome PG; Maciejewski MW; Setlow P
    J Bacteriol; 2006 Apr; 188(8):3153-8. PubMed ID: 16585779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of the development of the spore septum and membranes in Bacillus cereus by beta-phenethyl alcohol.
    Remsen CC; Lundgren DG; Slepecky RA
    J Bacteriol; 1966 Jan; 91(1):324-31. PubMed ID: 4955250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of ultraviolet resistance in sporulating Bacillus cereus T.
    Germaine GR; Coggiola E; Murrell WG
    J Bacteriol; 1973 Nov; 116(2):823-31. PubMed ID: 4200858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of Ca2+ and dipicolinic acid requirement for L-alanine induced germination of Bacillus cereus BIS-59 spores.
    Kamat AS; Lewis NF; Pradhan DS
    Microbios; 1985; 44(177):33-44. PubMed ID: 3938515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ENDOGENOUS FACTOR IN SPOROGENESIS IN BACTERIA. II. GROWTH AND SPORULATION IN BACILLUS SUBTILIS.
    KERRAVALA ZJ; SRINIVASAN VR; HALVORSON HO
    J Bacteriol; 1964 Aug; 88(2):374-80. PubMed ID: 14203353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex.
    Rao L; Liao X; Setlow P
    Lett Appl Microbiol; 2016 Oct; 63(4):247-53. PubMed ID: 27424522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus.
    Kominek LA; Halvorson HO
    J Bacteriol; 1965 Nov; 90(5):1251-9. PubMed ID: 4954554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC 14579.
    Hornstra LM; de Vries YP; de Vos WM; Abee T
    Appl Environ Microbiol; 2006 May; 72(5):3746-9. PubMed ID: 16672527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
    Huang SS; Chen D; Pelczar PL; Vepachedu VR; Setlow P; Li YQ
    J Bacteriol; 2007 Jul; 189(13):4681-7. PubMed ID: 17468248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct mass spectrometric analysis of Bacillus spores.
    Beverly MB; Voorhees KJ; Hadfield TL
    Rapid Commun Mass Spectrom; 1999; 13(23):2320-6. PubMed ID: 10567929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. I. CORRELATION OF MORPHOLOGICAL CHANGES WITH CATABOLIC ACTIVITIES, SYNTHESIS OF DIPICOLINIC ACID, AND DEVELOPMENT OF HEAT RESISTANCE.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):690-4. PubMed ID: 14208508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice.
    Molva C; Baysal AH
    Int J Food Microbiol; 2014 Oct; 189():82-8. PubMed ID: 25129530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymic changes and analysis of mutants.
    Forman M; Aronson A
    Biochem J; 1972 Feb; 126(3):503-13. PubMed ID: 4627586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores.
    Yamazaki K; Kawai Y; Inoue N; Shinano H
    Lett Appl Microbiol; 1997 Aug; 25(2):153-6. PubMed ID: 9281865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity.
    van der Voort M; Abee T
    J Appl Microbiol; 2013 Apr; 114(4):1201-10. PubMed ID: 23279596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.