These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 14066484)

  • 1. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS.
    HUNGATE RE
    J Bacteriol; 1963 Oct; 86(4):848-54. PubMed ID: 14066484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VITAMIN REQUIREMENTS OF SEVERAL CELLULOLYTIC RUMEN BACTERIA.
    SCOTT HW; DEHORITY BA
    J Bacteriol; 1965 May; 89(5):1169-75. PubMed ID: 14292981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional features of the intestinal anaerobe Ruminococcus bromii.
    Herbeck JL; Bryant MP
    Appl Microbiol; 1974 Dec; 28(6):1018-22. PubMed ID: 4451362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional Interdependence Among Rumen Bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus.
    Miura H; Horiguchi M; Matsumoto T
    Appl Environ Microbiol; 1980 Aug; 40(2):294-300. PubMed ID: 16345608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.
    Devendran S; Abdel-Hamid AM; Evans AF; Iakiviak M; Kwon IH; Mackie RI; Cann I
    Sci Rep; 2016 Oct; 6():35342. PubMed ID: 27748409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.
    Slyter LL; Weaver JM
    Appl Environ Microbiol; 1977 Feb; 33(2):363-9. PubMed ID: 557955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B; Dawson KA; Strobel HJ
    Appl Environ Microbiol; 1993 Aug; 59(8):2631-7. PubMed ID: 8368849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis.
    Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G
    BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inclusion of xylan in a medium for the enumeration of total culturable rumen bacteria.
    Henning PA; van der Walt AE
    Appl Environ Microbiol; 1978 Jun; 35(6):1008-11. PubMed ID: 677867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    J Bacteriol; 1962 Mar; 83(3):523-32. PubMed ID: 13860621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 .
    Iannotti EL; Kafkewitz D; Wolin MJ; Bryant MP
    J Bacteriol; 1973 Jun; 114(3):1231-40. PubMed ID: 4351387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.