These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14068484)

  • 41. [A preparative procedure for the isolation of enriched preparations of aminoacyl-tRNA-synthetases from baker's yeast].
    Ovander MN; Sandakhchiev LS
    Biokhimiia; 1966; 31(6):1121-6. PubMed ID: 5999843
    [No Abstract]   [Full Text] [Related]  

  • 42. Effects of ultraviolet light on the biological functions of transfer RNA.
    Uc MH; Scott JF
    Biochem Biophys Res Commun; 1966 Mar; 22(5):459-65. PubMed ID: 5329905
    [No Abstract]   [Full Text] [Related]  

  • 43. Inhibition of acceptor activity of tRNA by specific antibodies against tRNA.
    Pulkrábek P; Raska K; Rychlík I
    Biochim Biophys Acta; 1968 May; 157(3):652-4. PubMed ID: 4174337
    [No Abstract]   [Full Text] [Related]  

  • 44. PROTEIN SYNTHESIS WITH AN ESCHERICHIA COLI SYSTEM IN VITRO.
    WILLSON C; GROS F
    Biochim Biophys Acta; 1964 Mar; 80():478-96. PubMed ID: 14153851
    [No Abstract]   [Full Text] [Related]  

  • 45. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA.
    Gualerzi C; Pon CL; Kaji A
    Biochem Biophys Res Commun; 1971 Dec; 45(5):1312-9. PubMed ID: 4944357
    [No Abstract]   [Full Text] [Related]  

  • 46. Role of sulfhydryl groups in activating enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328550
    [No Abstract]   [Full Text] [Related]  

  • 47. Role of sulfhydryl groups in activatin enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328235
    [No Abstract]   [Full Text] [Related]  

  • 48. Modification of leucyl-sRNA after bacteriophage infection.
    Kano-Sueoka T; Sueoka N
    J Mol Biol; 1966 Sep; 20(1):183-209. PubMed ID: 5339328
    [No Abstract]   [Full Text] [Related]  

  • 49. Localization of two recognition sites in yeast valine tRNA I.
    Mirzabekov AD; Lastity D; Levina ES; Bayev AA
    Nat New Biol; 1971 Jan; 229(1):21-2. PubMed ID: 4924632
    [No Abstract]   [Full Text] [Related]  

  • 50. Some properties of lysyl ribonucleic acid synthetase from Escherichia coli.
    Waldenström J
    Eur J Biochem; 1968 Jul; 5(2):239-45. PubMed ID: 4877100
    [No Abstract]   [Full Text] [Related]  

  • 51. Polyamines and protein synthesis. V. Effect of salt solutions on aminoacyl transfer RNA formation.
    Takeda Y; Igarashi K
    Biochim Biophys Acta; 1970 Apr; 204(2):406-11. PubMed ID: 4909653
    [No Abstract]   [Full Text] [Related]  

  • 52. EVIDENCE OF AN AMINOACYL RIBONUCLEIC ACID SYNTHETASE ACTIVITY IN CALF LENS.
    VIRMAUX N; MANDEL P
    Nature; 1964 Jan; 201():297-8. PubMed ID: 14110457
    [No Abstract]   [Full Text] [Related]  

  • 53. CONSERVATION OF SPECIFICITY BETWEEN AMINO ACID ACCEPTOR RNA AND AMINO ACYL-SRNA SYNTHETASE.
    YAMANE T; SUEOKA N
    Proc Natl Acad Sci U S A; 1963 Dec; 50(6):1093-100. PubMed ID: 14096183
    [No Abstract]   [Full Text] [Related]  

  • 54. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SPECIES SPECIFICITY OF AMINO ACID ACCEPTOR RIBONUCLEIC ACID AND AMINOACYL SOLUBLE RIBONUCLEIC ACID SYNTHETASES.
    DOCTOR BP; MUDD JA
    J Biol Chem; 1963 Nov; 238():3677-81. PubMed ID: 14109204
    [No Abstract]   [Full Text] [Related]  

  • 56. Covalent joining of phenylalanine transfer ribonucleic acid half-molecules by T4 RNA ligase.
    Kaufmann G; Littauer UZ
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3741-5. PubMed ID: 4610584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of furanomycin on the synthesis of isoleucyl-tRNA.
    Tanaka K; Tamaki M; Watanabe S
    Biochim Biophys Acta; 1969 Nov; 195(1):244-5. PubMed ID: 4982424
    [No Abstract]   [Full Text] [Related]  

  • 58. The enhancing effect of ionic strength and MgC12 on the rate of the non-enzymic hydrolysis of N-blocked aminoacyl-tRNA's.
    Novogrodsky A
    Biochim Biophys Acta; 1971 Feb; 228(3):688-92. PubMed ID: 4929427
    [No Abstract]   [Full Text] [Related]  

  • 59. Recognition of tRNA by aminoacyl tRNA synthetases.
    Yarus M; Berg P
    J Mol Biol; 1967 Sep; 28(3):479-90. PubMed ID: 4861180
    [No Abstract]   [Full Text] [Related]  

  • 60. [Multiplicity and specificity in code recognition of tRNA against specific amino acid].
    Sekiya T; Ukita T
    Tanpakushitsu Kakusan Koso; 1969 May; 14(6):547-63. PubMed ID: 4896768
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.