These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1407547)

  • 1. Virtual trajectories, joint stiffness, and changes in the limb natural frequency during single-joint oscillatory movements.
    Latash ML
    Neuroscience; 1992 Jul; 49(1):209-20. PubMed ID: 1407547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.
    Latash ML; Gottlieb GL
    Neuroscience; 1991; 43(2-3):697-712. PubMed ID: 1922790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elbow impedance during goal-directed movements.
    Popescu F; Hidler JM; Rymer WZ
    Exp Brain Res; 2003 Sep; 152(1):17-28. PubMed ID: 12879184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual trajectories of single-joint movements performed under two basic strategies.
    Latash ML; Gottlieb GL
    Neuroscience; 1992; 47(2):357-65. PubMed ID: 1641128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.
    Latash ML
    Biol Cybern; 1992; 67(4):377-84. PubMed ID: 1515515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model.
    Koike Y; Kawato M
    Biol Cybern; 1995 Sep; 73(4):291-300. PubMed ID: 7578470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states.
    Tal'nov AN; Cherkassky VL; Kostyukov AI
    Neuroscience; 1997 Aug; 79(3):923-33. PubMed ID: 9219955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions.
    Latash ML
    Biol Cybern; 1994; 71(5):441-50. PubMed ID: 7993931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the electromyographic activity of human elbow joint muscles during slow linear flexion movements in isotorque conditions.
    Tal'nov AN; Serenko SG; Strafun SS; Kostyukov AI
    Neuroscience; 1999 Mar; 90(3):1123-36. PubMed ID: 10218811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretch reflex responses in the human elbow joint during a voluntary movement.
    Bennett DJ
    J Physiol; 1994 Jan; 474(2):339-51. PubMed ID: 8006819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the gamma equilibrium point hypothesis when applied to single degree of freedom movements performed with different inertial loads.
    Bellomo A; Inbar G
    Biol Cybern; 1997 Jan; 76(1):63-72. PubMed ID: 9050205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements.
    Hasan Z
    Biol Cybern; 1986; 53(6):373-82. PubMed ID: 3697407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The control of hand equilibrium trajectories in multi-joint arm movements.
    Flash T
    Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.