These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1407547)

  • 21. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The patterns of control signals underlying elbow joint movements in humans.
    St-Onge N; Qi H; Feldman AG
    Neurosci Lett; 1993 Dec; 164(1-2):171-4. PubMed ID: 8152596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Common principles underlying the control of rapid, single degree-of-freedom movements at different joints.
    Pfann KD; Hoffman DS; Gottlieb GL; Strick PL; Corcos DM
    Exp Brain Res; 1998 Jan; 118(1):35-51. PubMed ID: 9547076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of elbow joint stiffness in a vertical plane during cyclic movement at lower or higher frequencies than natural frequency.
    Abe MO; Yamada N
    Exp Brain Res; 2003 Dec; 153(3):394-9. PubMed ID: 14513302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of inertial load and velocity on the braking process of voluntary limb movements.
    Lestienne F
    Exp Brain Res; 1979 May; 35(3):407-18. PubMed ID: 456449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The generation of the efferent command and the importance of joint compliance in fast elbow movements.
    Gottlieb GL
    Exp Brain Res; 1994; 97(3):545-50. PubMed ID: 8187865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organizing principles for voluntary movement: extending single-joint rules.
    Almeida GL; Hong DA; Corcos D; Gottlieb GL
    J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximal frequency, amplitude, kinetic energy and elbow joint stiffness in cyclic movements.
    Zawadzki J; Siemieński A
    Acta Bioeng Biomech; 2010; 12(2):55-64. PubMed ID: 20882942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.
    Latash ML; Goodman SR
    J Electromyogr Kinesiol; 1994; 4(4):230-41. PubMed ID: 20870562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements.
    Milner TE
    Exp Brain Res; 1993; 93(1):177-80. PubMed ID: 8467888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
    Gomi H; Kawato M
    Biol Cybern; 1997 Mar; 76(3):163-71. PubMed ID: 9151414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic models and human elbow flexion movements: quantitative analysis.
    Wiegner AW; Wierzbicka MM
    Exp Brain Res; 1992; 88(3):665-73. PubMed ID: 1587325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organizing principles for single-joint movements. II. A speed-sensitive strategy.
    Corcos DM; Gottlieb GL; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):358-68. PubMed ID: 2769335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Timing and magnitude of electromyographic activity for two-joint arm movements in different directions.
    Karst GM; Hasan Z
    J Neurophysiol; 1991 Nov; 66(5):1594-604. PubMed ID: 1765796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programmed electromyographic activity and negative incremental muscle stiffness in monkeys jumping downward.
    Dyhre-Poulsen P; Laursen AM
    J Physiol; 1984 May; 350():121-36. PubMed ID: 6747847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and temporal modulation of joint stiffness during multijoint movement.
    Mah CD
    Exp Brain Res; 2001 Feb; 136(4):492-506. PubMed ID: 11291730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement.
    Gomi H; Kawato
    Science; 1996 Apr; 272(5258):117-20. PubMed ID: 8600521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.