These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1407665)

  • 1. Recovery of distal skills after neonatal lesion of the sensorimotor cortex in the cat.
    Armand J; Kably B
    Neurosci Lett; 1992 Apr; 138(1):45-8. PubMed ID: 1407665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical timing of sensorimotor cortex lesions for the recovery of motor skills in the developing cat.
    Armand J; Kably B
    Exp Brain Res; 1993; 93(1):73-88. PubMed ID: 8467893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pyramidal lesions on forelimb movements in the cat.
    Górska T; Sybirska E
    Acta Neurobiol Exp (Wars); 1980; 40(5):843-59. PubMed ID: 7234515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal system development depends on motor experience.
    Martin JH; Choy M; Pullman S; Meng Z
    J Neurosci; 2004 Mar; 24(9):2122-32. PubMed ID: 14999063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):137-54. PubMed ID: 6616261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulatory forelimb movements in normal and pyramidotomized dogs.
    Górska T; Zalewska-Walkowska M
    Acta Neurobiol Exp (Wars); 1980; 40(6):965-84. PubMed ID: 7234523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats.
    Umeda T; Takahashi M; Isa K; Isa T
    J Neurophysiol; 2010 Sep; 104(3):1707-16. PubMed ID: 20660415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limits on recovery in the corticospinal tract of the rat: partial lesions impair skilled reaching and the topographic representation of the forelimb in motor cortex.
    Piecharka DM; Kleim JA; Whishaw IQ
    Brain Res Bull; 2005 Aug; 66(3):203-11. PubMed ID: 16023917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyramidal control of fusimotor neurons supplying extensor muscles in the cat's forelimb.
    Yokota T; Voorhoeve PE
    Exp Brain Res; 1969; 9(2):96-115. PubMed ID: 4242161
    [No Abstract]   [Full Text] [Related]  

  • 10. Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey.
    Jankowska E; Padel Y; Tanaka R
    J Physiol; 1975 Aug; 249(3):637-67. PubMed ID: 1177109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of low pyramidal lesions on forelimb movements in the cat.
    Alstermark B; Isa T; Lundberg A; Pettersson LG; Tantisira B
    Neurosci Res; 1989 Oct; 7(1):71-5. PubMed ID: 2812571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing role of sensorimotor cortex and pyramidal tract neurons in contact placing in kittens.
    Amassian VE; Ross RJ
    J Physiol (Paris); 1978; 74(3):165-84. PubMed ID: 722594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pyramidotomy on limb flexion movements induced by cortical stimulation and on associated postural adjustment in the cat.
    Nieoullon A; Gahéry Y
    Brain Res; 1978 Jun; 149(1):39-52. PubMed ID: 656960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in electrical thresholds for evoking movements from the cat cerebral cortex following lesions of the sensori-motor area.
    Ring A; Rajandran H; Harvey A; Ghosh S
    Somatosens Mot Res; 2004 Jun; 21(2):117-36. PubMed ID: 15370092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections.
    Leonard CT; Goldberger ME
    Brain Res; 1987 Mar; 429(1):15-30. PubMed ID: 3567659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury.
    Sindhurakar A; Butensky SD; Meyers E; Santos J; Bethea T; Khalili A; Sloan AP; Rennaker RL; Carmel JB
    Neurorehabil Neural Repair; 2017 Feb; 31(2):122-132. PubMed ID: 27530125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparing of skilled forelimb reaching and corticospinal projections after neonatal motor cortex removal or hemidecortication in the rat: support for the Kennard doctrine.
    Whishaw IQ; Kolb B
    Brain Res; 1988 Jun; 451(1-2):97-114. PubMed ID: 3251605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsically directed pruning as a mechanism regulating the elimination of transient collateral pathways.
    Tolbert DL
    Brain Res; 1987 May; 430(1):11-21. PubMed ID: 3594263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.
    Wen TC; Lall S; Pagnotta C; Markward J; Gupta D; Ratnadurai-Giridharan S; Bucci J; Greenwald L; Klugman M; Hill NJ; Carmel JB
    Front Neural Circuits; 2018; 12():28. PubMed ID: 29706871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.