These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 14077035)

  • 1. LENS DEVELOPMENT: FIBER ELONGATION AND LENS ORIENTATION.
    COULOMBRE JL; COULOMBRE AJ
    Science; 1963 Dec; 142(3598):1489-90. PubMed ID: 14077035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LENS DEVELOPMENT. II. THE DIFFERENTIATION OF EMBRYONIC CHICK LENS EPITHELIAL CELLS IN VITRO AND IN VIVO.
    PHILPOTT GW; COULOMBRE AJ
    Exp Cell Res; 1965 Jun; 38():635-44. PubMed ID: 14329392
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytochalasin prevents cell elongation and increases potassium efflux from embryonic lens epithelial cells: implications for the mechanism of lens fiber cell elongation.
    Beebe DC; Cerrelli S
    Lens Eye Toxic Res; 1989; 6(4):589-601. PubMed ID: 2487272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells.
    Piatigorsky J
    Dev Biol; 1973 Jan; 30(1):214-6. PubMed ID: 4735366
    [No Abstract]   [Full Text] [Related]  

  • 5. The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens.
    Mochizuki T; Masai I
    Dev Growth Differ; 2014 Jun; 56(5):387-401. PubMed ID: 24720470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA synthesis in the embryonic chick lens epithelium is arrested after experimental lens rotation.
    Prada FA; García-Lomas V; Genis-Gálvez JM
    Histol Histopathol; 1994 Jan; 9(1):45-8. PubMed ID: 8003819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal distribution of zonulae adherens and associated actin bundles in both epithelium and fiber cells during chicken lens development.
    Lo WK; Shaw AP; Paulsen DF; Mills A
    Exp Eye Res; 2000 Jul; 71(1):45-55. PubMed ID: 10880275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fibroblast growth factor signaling during lens fiber cell differentiation.
    Huang JX; Feldmeier M; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):680-90. PubMed ID: 12556399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential requirement for beta-catenin in epithelial and fiber cells during lens development.
    Cain S; Martinez G; Kokkinos MI; Turner K; Richardson RJ; Abud HE; Huelsken J; Robinson ML; de Iongh RU
    Dev Biol; 2008 Sep; 321(2):420-33. PubMed ID: 18652817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability of the epithelium of diencephalic origin to differentiate into cells of the ocular lens.
    Jurić-Lekić G; Bulić-Jakus F; Kablar B; Svajger A
    Int J Dev Biol; 1991 Sep; 35(3):231-7. PubMed ID: 1814405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in crystallin expression during transdifferentiation and subsequent ageing of embryonic chick neural retina in vitro: comparison with lens epithelium.
    Patek CE; Jeanny JC; Clayton RM
    Exp Eye Res; 1993 Nov; 57(5):527-37. PubMed ID: 8282039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro.
    Fischer RS; Lee A; Fowler VM
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):166-74. PubMed ID: 10634617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in phosphatidylinositol metabolism during differentiation of lens epithelial cells into lens fiber cells in the embryonic chick.
    Zelenka PS
    J Biol Chem; 1980 Feb; 255(4):1296-300. PubMed ID: 7354028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation by insulin of cell elongation and microtubule assembly in embryonic chick-lens epithelia.
    Piatigorsky J; Rothschild SS; Wollberg M
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1195-8. PubMed ID: 4515617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation.
    Hyatt GA; Beebe DC
    Development; 1993 Feb; 117(2):701-9. PubMed ID: 8330534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of delta-crystallin RNA during lens morphogenesis and differentiation in the normal and talpid3 chick embryo.
    Head MW; Triplett EL; Ede DA; Clayton RM
    Int J Dev Biol; 1992 Sep; 36(3):363-72. PubMed ID: 1280155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-mobilization and cell contraction after muscarinic cholinergic stimulation of the chick embryo lens.
    Oppitz M; Mack A; Drews U
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4813-9. PubMed ID: 14578403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of cell elongation during lens fiber cell differentiation.
    Beebe DC; Compart PJ; Johnson MC; Feagans DE; Feinberg RN
    Dev Biol; 1982 Jul; 92(1):54-9. PubMed ID: 6179808
    [No Abstract]   [Full Text] [Related]  

  • 19. Volume regulation in lens epithelial cells and differentiating lens fiber cells.
    Beebe DC; Parmelee JT; Belcher KS
    J Cell Physiol; 1990 Jun; 143(3):455-9. PubMed ID: 2358469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equarin is involved as an FGF signaling modulator in chick lens differentiation.
    Song X; Sato Y; Felemban A; Ito A; Hossain M; Ochiai H; Yamamoto T; Sekiguchi K; Tanaka H; Ohta K
    Dev Biol; 2012 Aug; 368(1):109-17. PubMed ID: 22659080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.