These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 14077546)

  • 21. Sites of P22 and P221 prophage integration in Salmonella typhimurium.
    Young BG; Hartman PE
    Virology; 1966 Feb; 28(2):265-70. PubMed ID: 5326861
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of P22-mediated receptor release and of phage DNA injection on cell viability of Salmonella typhimurium.
    Villaverde A; Guerrero R; Barbé J
    J Gen Virol; 1986 Nov; 67 ( Pt 11)():2561-4. PubMed ID: 3537206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic relationships between serologically unrelated bacteriophages P22 and P221b.
    Yamamoto N; Weir ML
    Virology; 1966 Jan; 28(1):168-9. PubMed ID: 5323164
    [No Abstract]   [Full Text] [Related]  

  • 24. Phage-host co-evolution has led to distinct generalized transduction strategies.
    Wolput S; Lood C; Fillol-Salom A; Casters Y; Albasiony A; Cenens W; Vanoirbeek K; Kerremans A; Lavigne R; Penadés JR; Aertsen A
    Nucleic Acids Res; 2024 Jul; 52(13):7780-7791. PubMed ID: 38884209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of the repressor for lytic phage development after infection of Salmonella typhimurium by phage P22.
    PRELL HH
    Nature; 1962 Jun; 194():1055-7. PubMed ID: 14488589
    [No Abstract]   [Full Text] [Related]  

  • 26. Salmonella bacteriophage glycanases: endorhamnosidase activity of bacteriophages P27, 9NA, and KB1.
    Wollin R; Eriksson U; Lindberg AA
    J Virol; 1981 Jun; 38(3):1025-33. PubMed ID: 7017163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conservation of the N-terminus of some phage tail proteins.
    Villafane R; Costa S; Ahmed R; Salgado C
    Arch Virol; 2005 Dec; 150(12):2609-21. PubMed ID: 16096708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid between temperate phage P22 and virulent phage MB78.
    Verma M; Chakravorty M
    Biochem Biophys Res Commun; 1985 Oct; 132(1):42-8. PubMed ID: 4062934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of SE1, a new general transducing phage of Salmonella typhimurium.
    Llagostera M; Barbé J; Guerrero R
    J Gen Microbiol; 1986 Apr; 132(4):1035-41. PubMed ID: 3531393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages.
    Youderian P; Sugiono P; Brewer KL; Higgins NP; Elliott T
    Genetics; 1988 Apr; 118(4):581-92. PubMed ID: 2835289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Analysis of the lysogenesis response in the system of Salmonella typhimurium-phage P22 with the aid of UV irradiation].
    PRELL HH
    Arch Mikrobiol; 1961; 38():171-200. PubMed ID: 13737834
    [No Abstract]   [Full Text] [Related]  

  • 32. EFFECT OF OPSONINS ON PHAGOCYTOSIS AND KILLING OF SALMONELLAE BY AMOEBA PROTEUS, AND THE USE OF PHAGE P22 TO ELIMINATE SURPLUS EXTRACELLULAR BACTERIA.
    SAVANAT T; PAVILLARD ER
    Aust J Exp Biol Med Sci; 1964 Oct; 42():625-34. PubMed ID: 14208694
    [No Abstract]   [Full Text] [Related]  

  • 33. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system.
    Andres D; Roske Y; Doering C; Heinemann U; Seckler R; Barbirz S
    Mol Microbiol; 2012 Mar; 83(6):1244-53. PubMed ID: 22364412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens.
    Bohm K; Porwollik S; Chu W; Dover JA; Gilcrease EB; Casjens SR; McClelland M; Parent KN
    Mol Microbiol; 2018 May; 108(3):288-305. PubMed ID: 29470858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery.
    Iglesias SM; Lokareddy RK; Yang R; Li F; Yeggoni DP; David Hou CF; Leroux MN; Cortines JR; Leavitt JC; Bird M; Casjens SR; White S; Teschke CM; Cingolani G
    J Mol Biol; 2023 Dec; 435(24):168365. PubMed ID: 37952769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Conditions for S. typhimurium transfection by isolated DNA from bacteriophage P22 H5].
    Zaikin VL
    Zh Mikrobiol Epidemiol Immunobiol; 1977 Apr; (4):67-71. PubMed ID: 325966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dual role of wild phages for horizontal gene transfer among Salmonella strains.
    Rabsch W; Mirold S; Hardt WD; Tschäpe H
    Berl Munch Tierarztl Wochenschr; 2002; 115(9-10):355-9. PubMed ID: 12357672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of competition between salmonella phage P22 and coliphage P1 for adsorption sites on a Salmonella typhosa - Escherichia coli hybrid strain.
    Karunakaran V; Mojica-a T; Middleton RB
    Can J Microbiol; 1980 Jan; 26(1):7-12. PubMed ID: 6996799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of bacteriophage P22 on the inflammatory mediator gene expression in chicken macrophage HD11 cells infected with Salmonella Typhimurium.
    Ahn J; Biswas D
    FEMS Microbiol Lett; 2014 Mar; 352(1):11-7. PubMed ID: 24417259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium.
    Jung LS; Ding T; Ahn J
    Ann Clin Microbiol Antimicrob; 2017 Sep; 16(1):66. PubMed ID: 28938899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.