These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 14079480)

  • 21. The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total mixed ration on the ability of lactating dairy cows to cope with a short-term feed withholding and refeeding challenge.
    Thomson AL; Humphries DJ; Crompton LA; Reynolds CK
    J Dairy Sci; 2018 May; 101(5):4180-4192. PubMed ID: 29454691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The sequence of events preceding death of a cow in acute experimental bloat on fresh alfalfa tops.
    BODA JM; CUPPS PT; COLVIN H; COLE HH
    J Am Vet Med Assoc; 1956 Jun; 128(11):532-5. PubMed ID: 13319182
    [No Abstract]   [Full Text] [Related]  

  • 23. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber.
    Kammes KL; Allen MS
    J Dairy Sci; 2012 Jun; 95(6):3288-97. PubMed ID: 22612962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bloat in cattle. 13. Efficacy of molasses-salt blocks containing poloxalene in control of alfalfa bloat.
    Stiles DA; Bartley EE; Erhart AB; Meyer RM; Boren FW
    J Dairy Sci; 1967 Sep; 50(9):1437-43. PubMed ID: 6064143
    [No Abstract]   [Full Text] [Related]  

  • 25. Some properties of soluble proteins from alfalfa (Medicago sativa) herbage and their possible relationship to ruminant bloat.
    Howarth RE; Sarkar SK; Fesser AC; Schnarr GW
    J Agric Food Chem; 1976; 25(1):175-9. PubMed ID: 1002920
    [No Abstract]   [Full Text] [Related]  

  • 26. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development.
    Beiranvand H; Ghorbani GR; Khorvash M; Nabipour A; Dehghan-Banadaky M; Homayouni A; Kargar S
    J Dairy Sci; 2014; 97(4):2270-80. PubMed ID: 24508441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROLE OF THE RUMEN CILIATES IN BLOAT IN CATTLE.
    CLARKE RT
    Nature; 1965 Jan; 205():95-6. PubMed ID: 14283158
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function.
    Dewhurst RJ; Evans RT; Scollan ND; Moorby JM; Merry RJ; Wilkins RJ
    J Dairy Sci; 2003 Aug; 86(8):2612-21. PubMed ID: 12939085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nature of a muscle-inhibiting compound in lucerne and its possible connexion with bloat in cattle.
    FERGUSON WS; ASHWORTH DB; TERRY RA
    Nature; 1949 Apr; 163(4146):606. PubMed ID: 18117135
    [No Abstract]   [Full Text] [Related]  

  • 30. Excessive frothing in rumen produced by fresh legume tops.
    NICHOLS RE
    J Am Vet Med Assoc; 1956 Feb; 128(4):215. PubMed ID: 13286188
    [No Abstract]   [Full Text] [Related]  

  • 31. A review of bloat in cattle.
    Howarth RE
    Can Vet J; 1975 Oct; 16(10):281-94. PubMed ID: 1104136
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of sodium bicarbonate addition to alfalfa hay-based diets on digestibility of dietary fractions and rumen characteristics.
    DePeters EJ; Fredeen AH; Bath DL; Smith NE
    J Dairy Sci; 1984 Oct; 67(10):2344-55. PubMed ID: 6094626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of alcohol ethoxylate and pluronic detergents on the development of pasture bloat in cattle and sheep.
    Stanford K; Wang Y; Berg BP; Majak W; McCartney DH; Baron V; McAllister TA
    J Dairy Sci; 2001 Jan; 84(1):167-76. PubMed ID: 11210030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BLOAT IN CATTLE. VI. PREVENTION OF LEGUME BLOAT WITH A NONIONIC SURFACTANT.
    BARTLEY EE
    J Dairy Sci; 1965 Jan; 48():102-4. PubMed ID: 14285553
    [No Abstract]   [Full Text] [Related]  

  • 35. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids.
    Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V
    J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.
    Akins MS; Kegley EB; Coffey KP; Caldwell JD; Lusby KS; Moore JC; Coblentz WK
    J Anim Sci; 2009 Oct; 87(10):3278-87. PubMed ID: 19574572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentation, degradation and microbial nitrogen partitioning for three forage colour phenotypes within anthocyanidin-accumulating Lc-alfalfa progeny.
    Jonker A; Gruber MY; Wang Y; Narvaez N; Coulman B; McKinnon JJ; Christensen DA; Azarfar A; Yu P
    J Sci Food Agric; 2012 Aug; 92(11):2265-73. PubMed ID: 22337233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.
    Bootten TJ; Joblin KN; McArdle BH; Harris PJ
    J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of the ash content of the rumen ingesta on the hydrogen ion concentration in the bovine rumen.
    CASON JL; RUBY ES; STALLCUP OT
    J Nutr; 1954 Mar; 52(3):457-65. PubMed ID: 13143445
    [No Abstract]   [Full Text] [Related]  

  • 40. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.
    Kammes KL; Ying Y; Allen MS
    J Dairy Sci; 2012 May; 95(5):2616-31. PubMed ID: 22541490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.