These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 14079680)

  • 1. THE SPECIFICITY OF THE INITIAL CURRENT IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. VOLTAGE CLAMP EXPERIMENTS.
    FRANKENHAEUSER B; MOORE LE
    J Physiol; 1963 Nov; 169(2):438-44. PubMed ID: 14079680
    [No Abstract]   [Full Text] [Related]  

  • 2. THE EFFECT OF TEMPERATURE ON THE SODIUM AND POTASSIUM PERMEABILITY CHANGES IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS.
    FRANKENHAEUSER B; MOORE LE
    J Physiol; 1963 Nov; 169(2):431-7. PubMed ID: 14079679
    [No Abstract]   [Full Text] [Related]  

  • 3. ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA.
    FRANKENHAEUSER B; VALLBO AB
    Acta Physiol Scand; 1965; 63():1-20. PubMed ID: 14286770
    [No Abstract]   [Full Text] [Related]  

  • 4. A QUANTITATIVE DESCRIPTION OF POTASSIUM CURRENTS IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS.
    FRANKENHAEUSER B
    J Physiol; 1963 Nov; 169(2):424-30. PubMed ID: 14079678
    [No Abstract]   [Full Text] [Related]  

  • 5. ACCOMMODATION RELATED TO INACTIVATION OF THE SODIUM PERMEABILITY IN SINGLE MYELINATED NERVE FIBRES FROM XENOPUS LAEVIS.
    VALLBO AB
    Acta Physiol Scand; 1964 Aug; 61():429-44. PubMed ID: 14209259
    [No Abstract]   [Full Text] [Related]  

  • 6. INACTIVATION OF THE SODIUM-CARRYING MECHANISM IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS.
    FRANKENHAEUSER B
    J Physiol; 1963 Nov; 169(2):445-51. PubMed ID: 14079681
    [No Abstract]   [Full Text] [Related]  

  • 7. REMOVAL OF THE INHIBITORY EFFECT OF HYPERTONIC SOLUTIONS ON THE CONTRACTIBILITY IN MUSCLE CELLS AND THE EXCITATION-CONTRACTION LINK.
    FUJINO S; FUJINO M
    Nature; 1964 Mar; 201():1331-3. PubMed ID: 14151424
    [No Abstract]   [Full Text] [Related]  

  • 8. PHYSIOLOGICAL PROPERTIES OF THE ISOLATED FROG BLADDER IN HYPEROSMOTIC SOLUTIONS.
    BENTLEY PJ
    Comp Biochem Physiol; 1964 Jun; 12():233-9. PubMed ID: 14200724
    [No Abstract]   [Full Text] [Related]  

  • 9. THE OSMOTIC PROPERTIES OF STRIATED MUSCLE FIBERS IN HYPERTONIC SOLUTIONS.
    DYDYNSKA M; WILKIE DR
    J Physiol; 1963 Nov; 169(2):312-29. PubMed ID: 14079669
    [No Abstract]   [Full Text] [Related]  

  • 10. OSMOTIC TOLERANCE OF THE MUSCLES OF TWO DESERT-INHABITING TOADS, BUFO COGNATUS AND SCAPHIOPUS COUCHI.
    MCCLANAHAN L
    Comp Biochem Physiol; 1964 Aug; 12():501-8. PubMed ID: 14206962
    [No Abstract]   [Full Text] [Related]  

  • 11. ADAPTATION OF THE SILVER EEL (ANGUILLA ANGUILLA L.) TO SEA WATER AND TO ARTIFICIAL MEDIA TOGETHER WITH OBSERVATIONS ON THE ROLE OF THE GUT.
    SHARRATT BM; BELLAMY D; JONES IC
    Comp Biochem Physiol; 1964 Jan; 11():19-30. PubMed ID: 14171654
    [No Abstract]   [Full Text] [Related]  

  • 12. AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE.
    FATT P
    Proc R Soc Lond B Biol Sci; 1964 Mar; 159():606-51. PubMed ID: 14130855
    [No Abstract]   [Full Text] [Related]  

  • 13. ACCOMMODATION OF SINGLE MYELINATED NERVE FIBRES FROM XENOPUS LAEVIS RELATED TO TYPE OF END ORGAN.
    VALLBO AB
    Acta Physiol Scand; 1964 Aug; 61():413-28. PubMed ID: 14209258
    [No Abstract]   [Full Text] [Related]  

  • 14. THE ACTION POTENTIAL IN THE MYELINATED NERVE FIBER OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA.
    FRANKENHAEUSER B; HUXLEY AF
    J Physiol; 1964 Jun; 171(2):302-15. PubMed ID: 14191481
    [No Abstract]   [Full Text] [Related]  

  • 15. CONTRACTION IN INTRAFUSAL MUSCLE FIBRES OF XENOPUS LAEVIS FOLLOWING STIMULATION OF THEIR MOTOR NERVES.
    SMITH RS
    Acta Physiol Scand; 1964 Nov; 62():195-208. PubMed ID: 14236549
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibres of Xenopus laevis. Potential clamp experiments.
    Brismar T
    Acta Physiol Scand; 1973 Apr; 87(4):474-84. PubMed ID: 4737548
    [No Abstract]   [Full Text] [Related]  

  • 17. THE RELATION BETWEEN THE LATE AFTER-POTENTIAL AND THE SIZE OF THE TRANSVERSE TUBULAR SYSTEM OF FROG MUSCLE.
    FREYGANG WH; GOLDSTEIN DA; HELLAM DC; PEACHEY LD
    J Gen Physiol; 1964 Nov; 48(2):235-63. PubMed ID: 14225256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IODOACETATE DEPRESSION IN XENOPUS SCIATIC SINGLE NERVE FIBERS.
    SCHOEPFLE GM; ATKINS E; SCHAFER LA
    Am J Physiol; 1965 Apr; 208():720-3. PubMed ID: 14274804
    [No Abstract]   [Full Text] [Related]  

  • 19. Potassium permeability in myelinated nerve fibres of Xenopus laevis.
    FRANKENHAEUSER B
    J Physiol; 1962 Jan; 160(1):54-61. PubMed ID: 13894665
    [No Abstract]   [Full Text] [Related]  

  • 20. THE EFFECT OF OSMOTIC PRESSURE CHANGES ON THE ISOLATED MUSCLE SPINDLE.
    OTTOSON D
    Acta Physiol Scand; 1965; 64():93-105. PubMed ID: 14347282
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.