These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 140868)

  • 1. Effects of arginine binding reagents on ATPase and ATP-Pi exchange activities of mitochondrial ATP synthetase complex (complex V).
    Frigeri L; Galante YM; Hanstein WG; Hatefi Y
    J Biol Chem; 1977 May; 252(10):3147-52. PubMed ID: 140868
    [No Abstract]   [Full Text] [Related]  

  • 2. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue.
    Borchardt RT; Schasteen CS
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of tannic acid on the phosphorylation and ATPase activity of mitochondria from blowfly flight muscle.
    Duncan CJ; Bowler K; Davison TF
    Biochem Pharmacol; 1970 Aug; 19(8):2453-60. PubMed ID: 4255606
    [No Abstract]   [Full Text] [Related]  

  • 4. Heat stability of milk: influence of modification of lysine and arginine on the heat stability-pH profile.
    Shalabi SI; Fox PF
    J Dairy Res; 1982 Nov; 49(4):607-17. PubMed ID: 6816842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential arginyl residue in the soluble chloroplast ATPase.
    Andreo CS; Vallejos RH
    FEBS Lett; 1977 Jun; 78(2):207-10. PubMed ID: 142021
    [No Abstract]   [Full Text] [Related]  

  • 6. Essential role of an arginyl residue at the catalytic site(s) of chloroplast coupling factor.
    Vallejos RH; Viale A; Andreo CS
    FEBS Lett; 1977 Dec; 84(2):304-8. PubMed ID: 145954
    [No Abstract]   [Full Text] [Related]  

  • 7. Arginine modifiers as energy transfer inhibitors in photophosphorylation.
    Schmid R; Jagendorf AT; Hulkower S
    Biochim Biophys Acta; 1977 Oct; 462(1):177-86. PubMed ID: 143962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system.
    Harris DA; Radda GK; Slater EC
    Biochim Biophys Acta; 1977 Mar; 459(3):560-72. PubMed ID: 139163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of arginyl residues in ferredoxin-NADP+ reductase from spinach leaves.
    Zanetti G; Gozzer C; Sacchi G; Curti B
    Biochim Biophys Acta; 1979 May; 568(1):127-34. PubMed ID: 444539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of streptozotocin-induced diabetes on oxidative phosphorylation and related reactions in skeletal muscle mitochondria.
    Gross MD; Harris S; Beyer RE
    Horm Metab Res; 1972 Jan; 4(1):1-7. PubMed ID: 4258780
    [No Abstract]   [Full Text] [Related]  

  • 13. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor.
    van de Stadt RJ; de Boer BL; van Dam K
    Biochim Biophys Acta; 1973 Feb; 292(2):338-49. PubMed ID: 4349916
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel property of mitochondrial oxidative phosphorylation.
    Wilson DF; Fairs K
    Biochem Biophys Res Commun; 1974 Feb; 56(3):635-40. PubMed ID: 4363746
    [No Abstract]   [Full Text] [Related]  

  • 16. Exploring sites on mitochondrial ATPase for catalysis, regulation, and inhibition.
    Lardy HA; Schuster SM; Ebel RE
    J Supramol Struct; 1975; 3(3):214-21. PubMed ID: 127084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of adenylyl imidodiphosphate on adenosine triphosphate synthesis and the partial reactions of oxidative phosphorylation.
    Penefsky HS
    J Biol Chem; 1974 Jun; 249(11):3579-85. PubMed ID: 4364660
    [No Abstract]   [Full Text] [Related]  

  • 18. Energized state of mitochondria as revealed by the spectral change of bound bixin.
    Hirose S; Yaginuma N; Inada Y
    Arch Biochem Biophys; 1972 Sep; 152(1):36-43. PubMed ID: 4262873
    [No Abstract]   [Full Text] [Related]  

  • 19. Arginyl residue modification of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 Jun; 70(4):1048-54. PubMed ID: 133684
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the kinetic mechanism of oxidative phosphorylation.
    Schuster SM; Reinhart GD; Lardy HA
    J Biol Chem; 1977 Jan; 252(2):427-32. PubMed ID: 833136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.