These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 140870)

  • 1. Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles.
    Jones LR; Besch HR; Watanabe AM
    J Biol Chem; 1977 May; 252(10):3315-23. PubMed ID: 140870
    [No Abstract]   [Full Text] [Related]  

  • 2. Resistance of active monovalent cation transport to pronase digestion of intact human erythrocytes.
    Wagner H; Smith TW; Young M
    Arch Biochem Biophys; 1974 Jul; 163(1):95-8. PubMed ID: 4277632
    [No Abstract]   [Full Text] [Related]  

  • 3. [Effect of sodium gradient on calcium uptake by plasma membranes of the myometrium].
    Bratkova NF; Kurskii MD; Kosterin SA
    Biokhimiia; 1982 Jun; 47(6):1015-21. PubMed ID: 6810956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intact vesicles of membranes in cardiac microsomes: evidence from vectorial properties of integral enzymes.
    Besch HR; Jones LR; Watanabe AM
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():219-25. PubMed ID: 201982
    [No Abstract]   [Full Text] [Related]  

  • 5. Modulation by polyelectrolytes of canine cardiac microsomal calcium uptake and the possible relationship to phospholamban.
    Xu ZC; Kirchberger MA
    J Biol Chem; 1989 Oct; 264(28):16644-51. PubMed ID: 2476444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Passive Ca2+ permeability of vesicular sarcolemmal preparations from myocardium].
    Kupriianov VV; Preobrazherskiĭ AN; Saks VA
    Biokhimiia; 1981 Oct; 46(10):1863-79. PubMed ID: 6458335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-calcium ion exchange in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):590-4. PubMed ID: 284383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M; Finegan JA; Katz AM
    J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmasking effect of alamethicin on the (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles.
    Jones LR; Maddock SW; Besch HR
    J Biol Chem; 1980 Oct; 255(20):9971-80. PubMed ID: 6253461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP stimulation of membrane phosphorylation and Ca2+-activated, Mg2+-dependent ATPase in cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR
    Biochim Biophys Acta; 1977 Sep; 461(3):441-59. PubMed ID: 197994
    [No Abstract]   [Full Text] [Related]  

  • 11. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions.
    Duggan PF
    J Biol Chem; 1977 Mar; 252(5):1620-7. PubMed ID: 14156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intact vesicles of canine cardiac sarcolemma: evidence from vectorial properties of Na+, K+-ATPase.
    Besch HR; Jones LR; Watanabe AM
    Circ Res; 1976 Oct; 39(4):586-95. PubMed ID: 183913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the inotropic mechanisms of cardiac glycosides in cultured heart cells.
    Smith TW; Kim D; Barry WH
    Basic Res Cardiol; 1984; 79 Suppl():140-6. PubMed ID: 6331373
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
    Shigekawa M; Pearl LJ
    J Biol Chem; 1976 Nov; 251(22):6947-52. PubMed ID: 136443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles.
    Slaughter RS; Sutko JL; Reeves JP
    J Biol Chem; 1983 Mar; 258(5):3183-90. PubMed ID: 6826557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid-induced alterations in myocardial sodium-potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding.
    Curfman GD; Crowley TJ; Smith TW
    J Clin Invest; 1977 Mar; 59(3):586-90. PubMed ID: 138689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differing sensitivities of Purkinje fibers and myocardium to inhibition of monovalent cation transport by digitalis.
    Somberg JC; Barry WH; Smith TW
    J Clin Invest; 1981 Jan; 67(1):116-23. PubMed ID: 7451646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
    Coutinho OP; Carvalho AP; Carvalho CA
    J Neurochem; 1983 Sep; 41(3):670-6. PubMed ID: 6409998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.