These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 140870)

  • 41. Reaction mechanism of the cardiac sarcotubule calcium(II) dependent adenosine triphosphatase.
    Pang DC; Briggs FN
    Biochemistry; 1973 Nov; 12(24):4905-11. PubMed ID: 4271562
    [No Abstract]   [Full Text] [Related]  

  • 42. Effects of mitogens on sodium-potassium transport, 3H-ouabain binding, and adenosine triphosphatase activity in lymphocytes.
    Averdunk R; Lauf PK
    Exp Cell Res; 1975 Jul; 93(2):331-42. PubMed ID: 125654
    [No Abstract]   [Full Text] [Related]  

  • 43. Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules.
    Vieyra A; Nachbin L; de Dios-Abad E; Goldfeld M; Meyer-Fernandes JR; de Moraes L
    J Biol Chem; 1986 Mar; 261(9):4247-55. PubMed ID: 3005327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Oct; 250(19):7687-92. PubMed ID: 240836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes.
    Robblee LS; Shepro D; Belamarich FA
    J Gen Physiol; 1973 Apr; 61(4):462-81. PubMed ID: 4266586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.
    Meissner G
    J Biol Chem; 1981 Jan; 256(2):636-43. PubMed ID: 7451464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum.
    Kirchberger MA; Antonetz T
    J Biol Chem; 1982 May; 257(10):5685-91. PubMed ID: 6121798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of active oxygen generated by DTT/Fe2+ on cardiac Na+/Ca2+ exchange and membrane permeability to Ca2+.
    Shi ZQ; Davison AJ; Tibbits GF
    J Mol Cell Cardiol; 1989 Oct; 21(10):1009-16. PubMed ID: 2531229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Na+-like effect of monovalent cations in the stimulation of sea bass gill Mg2+-dependent Na+-stimulated ATPase.
    Ventrella V; Pagliarani A; Trigari G; Trombetti F; Borgatti AR
    Comp Biochem Physiol B; 1987; 88(2):691-5. PubMed ID: 2962815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria.
    Harigaya S; Schwartz A
    Circ Res; 1969 Dec; 25(6):781-94. PubMed ID: 5364651
    [No Abstract]   [Full Text] [Related]  

  • 52. Intracellular calcium and myocardial contractility. 3. Reduced calcium uptake and ATPase of the sarcoplasmic reticular fraction prepared from chronically failing calf hearts.
    Suko J; Vogel JH; Chidsey CA
    Circ Res; 1970 Aug; 27(2):235-47. PubMed ID: 4247907
    [No Abstract]   [Full Text] [Related]  

  • 53. Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells.
    Poulin R; Lessard M; Zhao C
    J Biol Chem; 1995 Jan; 270(4):1695-704. PubMed ID: 7530245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium absorption by fish intestine: the involvement of ATP- and sodium-dependent calcium extrusion mechanisms.
    Flik G; Schoenmakers TJ; Groot JA; van Os CH; Wendelaar Bonga SE
    J Membr Biol; 1990 Jan; 113(1):13-22. PubMed ID: 2137539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sarcoplasmic reticulum ATPase on a solid support.
    Brown HD; Chattopadhyay SK; Patel A
    Biochem Biophys Res Commun; 1966 Nov; 25(3):304-8. PubMed ID: 4226471
    [No Abstract]   [Full Text] [Related]  

  • 56. Calmodulin regulation of calcium transport in cardiac sarcoplasmic reticulum.
    Lopaschuk G; Katz S
    Ann N Y Acad Sci; 1980; 356():404-5. PubMed ID: 6940503
    [No Abstract]   [Full Text] [Related]  

  • 57. Effect of divalent cation chelation on dihydropyridine binding in isolated cardiac sarcolemma vesicles.
    Schilling WP
    Biochim Biophys Acta; 1988 Aug; 943(2):220-30. PubMed ID: 2969752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parallel unmasking of latent adenylate cyclase and (Na+,K+)-ATPase activities in cardiac sarcolemmal vesicles. A new use of the channel-forming ionophore Alamethicin.
    Besch HR; Jones LR; Fleming JW; Watanabe AM
    J Biol Chem; 1977 Nov; 252(22):7905-8. PubMed ID: 144131
    [No Abstract]   [Full Text] [Related]  

  • 59. Calcium in the control of cardiac contraction and relaxation: the cardiac relaxing system (sarcoplasmic reticulum fragments) and the effects of ionophoric antibiotics.
    Entman ML; Schwartz A
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():437-50. PubMed ID: 4283216
    [No Abstract]   [Full Text] [Related]  

  • 60. Effect of inotropic agents on the calcium binding to isolated cardiac sarcolemma.
    Pang DC
    Biochim Biophys Acta; 1980 Jun; 598(3):528-42. PubMed ID: 7388022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.