These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1408816)

  • 1. Alw26I, Eco31I and Esp3I--type IIs methyltransferases modifying cytosine and adenine in complementary strands of the target DNA.
    Bitinaite J; Maneliene Z; Menkevicius S; Klimasauskas S; Butkus V; Janulaitis A
    Nucleic Acids Res; 1992 Oct; 20(19):4981-5. PubMed ID: 1408816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of the bases modified by M.BcoKIA and M.BcoKIB methylases in the sequence 5 -CTCTTC-3 /5 -GAAGAG-3.
    Svadbina IV; Matvienko NN; Zheleznaya LA; Matvienko NI
    Biochemistry (Mosc); 2005 Oct; 70(10):1126-8. PubMed ID: 16271028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4.
    Jeltsch A; Christ F; Fatemi M; Roth M
    J Biol Chem; 1999 Jul; 274(28):19538-44. PubMed ID: 10391886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues.
    Jeltsch A
    Biol Chem; 2001 Apr; 382(4):707-10. PubMed ID: 11405235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparative study of the M.Bstf5I-1 and M.BstF5I-3 DNA methyltransferases from the Bacillus stearothermophilus F5 restriction-modification system].
    Netesova NA; Golikova LN; Ovechkina LG; Evdokimov AA; Malygin EG; Gololobova NS; Gonchar DA; Degtiarev SKh
    Mol Biol (Mosk); 2002; 36(1):136-43. PubMed ID: 11862704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M.FokI methylates adenine in both strands of its asymmetric recognition sequence.
    Landry D; Looney MC; Feehery GR; Slatko BE; Jack WE; Schildkraut I; Wilson GG
    Gene; 1989 Apr; 77(1):1-10. PubMed ID: 2744483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I.
    Jakubauskas A; Sasnauskas G; Giedriene J; Janulaitis A
    Biochemistry; 2008 Aug; 47(33):8546-56. PubMed ID: 18642930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry elements in DNA structure important for recognition/methylation by DNA [amino]-methyltransferases.
    Zinoviev VV; Yakishchik SI; Evdokimov AA; Malygin EG; Hattman S
    Nucleic Acids Res; 2004; 32(13):3930-4. PubMed ID: 15280508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recognition sites of adenine DNA-methylases from cells of E. coli].
    Lopatina NG; Nikol'skaia II; Sverdlov ED; Debov SS
    Vopr Med Khim; 1981; 27(2):220-3. PubMed ID: 7025443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: an adenine-specific M.NlaIII and a cytosine-type methylase.
    Labbé D; Höltke HJ; Lau PC
    Mol Gen Genet; 1990 Oct; 224(1):101-10. PubMed ID: 2277628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of methylation specificity of sequence-specific DNA methyltransferases using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.
    Tamura T; Araki Y; Yamaoka S; Inagaki K; Tanaka H
    Nucleic Acids Res; 1997 Oct; 25(20):4162-4. PubMed ID: 9321674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical display of thymine residues flipped out by DNA methyltransferases.
    Serva S; Weinhold E; Roberts RJ; Klimasauskas S
    Nucleic Acids Res; 1998 Aug; 26(15):3473-9. PubMed ID: 9671807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angle and locus of the bend induced by the msp I DNA methyltransferase in a sequence-specific complex with DNA.
    Dubey AK; Bhattacharya SK
    Nucleic Acids Res; 1997 May; 25(10):2025-9. PubMed ID: 9115372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On heterogeneity of DNA methylases from Escherichia coli SK cells.
    Nikolskaya II; Lopatina NG; Debov SS
    Mol Cell Biochem; 1981 Feb; 35(1):3-10. PubMed ID: 7012581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How M.MspI and M.HpaII decide which base to methylate.
    Mi S; Roberts RJ
    Nucleic Acids Res; 1992 Sep; 20(18):4811-6. PubMed ID: 1408795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for locating methylated bases in DNA using class-IIS restriction enzymes.
    Pósfai G; Szybalski W
    Gene; 1988 Dec; 74(1):179-81. PubMed ID: 3074006
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of the type IV restriction modification system BspLU11III from Bacillus sp. LU11.
    Lepikhov K; Tchernov A; Zheleznaja L; Matvienko N; Walter J; Trautner TA
    Nucleic Acids Res; 2001 Nov; 29(22):4691-8. PubMed ID: 11713319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and biology of DNA methyltransferases.
    Ahmad I; Rao DN
    Crit Rev Biochem Mol Biol; 1996 Dec; 31(5-6):361-80. PubMed ID: 8994802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases.
    Klimasauskas S; Timinskas A; Menkevicius S; Butkienè D; Butkus V; Janulaitis A
    Nucleic Acids Res; 1989 Dec; 17(23):9823-32. PubMed ID: 2690010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.