These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 1408835)

  • 1. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer between specific-labeled sites on DNA.
    Ozaki H; McLaughlin LW
    Nucleic Acids Symp Ser; 1992; (27):67-8. PubMed ID: 1283917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies.
    Norman DG; Grainger RJ; Uhrín D; Lilley DM
    Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational flexibility of three-way DNA junctions containing unpaired nucleotides.
    Yang M; Millar DP
    Biochemistry; 1996 Jun; 35(24):7959-67. PubMed ID: 8672499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer.
    Cardullo RA; Agrawal S; Flores C; Zamecnik PC; Wolf DE
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8790-4. PubMed ID: 3194390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis.
    Clegg RM; Murchie AI; Lilley DM
    Biophys J; 1994 Jan; 66(1):99-109. PubMed ID: 8130350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template.
    Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R
    Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution conformation of the (-)-cis-anti-benzo[a]pyrenyl-dG adduct opposite dC in a DNA duplex: intercalation of the covalently attached BP ring into the helix with base displacement of the modified deoxyguanosine into the major groove.
    Cosman M; Hingerty BE; Luneva N; Amin S; Geacintov NE; Broyde S; Patel DJ
    Biochemistry; 1996 Jul; 35(30):9850-63. PubMed ID: 8703959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of thermodynamic and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy.
    Yang M; Ghosh SS; Millar DP
    Biochemistry; 1994 Dec; 33(51):15329-37. PubMed ID: 7803396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer.
    Clegg RM; Murchie AI; Zechel A; Lilley DM
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2994-8. PubMed ID: 8464916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional context of a double helix determines the fluorescence of the internucleoside-tethered pair of fluorophores.
    Metelev V; Zhang S; Tabatadze D; Kumar AT; Bogdanov A
    Mol Biosyst; 2013 Oct; 9(10):2447-53. PubMed ID: 23925269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence energy transfer between two triple helix-forming oligonucleotides bound to duplex DNA.
    Mergny JL; Garestier T; Rougée M; Lebedev AV; Chassignol M; Thuong NT; Hélène C
    Biochemistry; 1994 Dec; 33(51):15321-8. PubMed ID: 7803395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long range molecular wire behaviour in a metal complex of DNA.
    Aich P; Skinner RJ; Wettig SD; Steer RP; Lee JS
    J Biomol Struct Dyn; 2002 Aug; 20(1):93-8. PubMed ID: 12144356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance energy transfer measurements between substrate binding sites within the large (Klenow) fragment of Escherichia coli DNA polymerase I.
    Allen DJ; Benkovic SJ
    Biochemistry; 1989 Dec; 28(25):9586-93. PubMed ID: 2692712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in duplexes.
    Parkhurst KM; Parkhurst LJ
    Biochemistry; 1995 Jan; 34(1):293-300. PubMed ID: 7819210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorometric assay for DNA cleavage reactions characterized with BamHI restriction endonuclease.
    Lee SP; Porter D; Chirikjian JG; Knutson JR; Han MK
    Anal Biochem; 1994 Aug; 220(2):377-83. PubMed ID: 7978282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer.
    Gohlke C; Murchie AI; Lilley DM; Clegg RM
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11660-4. PubMed ID: 7526401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of fluorescence energy transfer in duplex and branched DNA molecules.
    Cooper JP; Hagerman PJ
    Biochemistry; 1990 Oct; 29(39):9261-8. PubMed ID: 2271593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.