These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1409448)

  • 1. Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole.
    Orlow SJ; Osber MP; Pawelek JM
    Pigment Cell Res; 1992 Sep; 5(3):113-21. PubMed ID: 1409448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects of melanin monomers, dihydroxyindole-2-carboxylic acid (DHICA) and dihydroxyindole (DHI) on mammalian tyrosinase, with a special reference to the role of DHICA/DHI ratio in melanogenesis.
    Wilczek A; Mishima Y
    Pigment Cell Res; 1995 Apr; 8(2):105-12. PubMed ID: 7659677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole.
    Aroca P; Solano F; Salinas C; García-Borrón JC; Lozano JA
    Eur J Biochem; 1992 Aug; 208(1):155-63. PubMed ID: 1511683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. After dopachrome?
    Pawelek JM
    Pigment Cell Res; 1991 Mar; 4(2):53-62. PubMed ID: 1946209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation.
    Jiang S; Liu XM; Dai X; Zhou Q; Lei TC; Beermann F; Wakamatsu K; Xu SZ
    Free Radic Biol Med; 2010 May; 48(9):1144-51. PubMed ID: 20123016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid.
    Micillo R; Iacomino M; Perfetti M; Panzella L; Koike K; D'Errico G; d'Ischia M; Napolitano A
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):475-483. PubMed ID: 29350885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance of immune hyporesponsiveness to melanosomal proteins by DHICA-mediated antioxidation: Possible implications for autoimmune vitiligo.
    Liu XM; Zhou Q; Xu SZ; Wakamatsu K; Lei TC
    Free Radic Biol Med; 2011 May; 50(9):1177-85. PubMed ID: 21256957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid.
    Charkoudian LK; Franz KJ
    Inorg Chem; 2006 May; 45(9):3657-64. PubMed ID: 16634598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on elementary steps of dopachrome conversion from first-principles calculation.
    Kishida R; Ushijima Y; Saputro AG; Kasai H
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):734-43. PubMed ID: 24807014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities.
    Kameyama K; Sakai C; Kuge S; Nishiyama S; Tomita Y; Ito S; Wakamatsu K; Hearing VJ
    Pigment Cell Res; 1995 Apr; 8(2):97-104. PubMed ID: 7659683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of dopachrome tautomerization into 5,6-dihydroxyindole-2-carboxylic acid catalyzed by Cu(II) based on quantum chemical calculations.
    Kishida R; Saputro AG; Kasai H
    Biochim Biophys Acta; 2015 Feb; 1850(2):281-6. PubMed ID: 25450182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect melanogenesis. II. Inability of Manduca phenoloxidase to act on 5,6-dihydroxyindole-2-carboxylic acid.
    Sugumaran M; Duggaraju R; Generozova F; Ito S
    Pigment Cell Res; 1999 Apr; 12(2):118-25. PubMed ID: 10231199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopachrome tautomerase decreases the binding of indolic melanogenesis intermediates to proteins.
    Salinas C; García-Borrón JC; Solano F; Lozano JA
    Biochim Biophys Acta; 1994 Jan; 1204(1):53-60. PubMed ID: 8305475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipoxygenase/H2O2-catalyzed oxidation of dihdroxyindoles: synthesis of melanin pigments and study of their antioxidant properties.
    Blarzino C; Mosca L; Foppoli C; Coccia R; De Marco C; Rosei MA
    Free Radic Biol Med; 1999 Feb; 26(3-4):446-53. PubMed ID: 9895237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of dopachrome oxidoreductase and metal ions in dopachrome conversion in the eumelanin pathway.
    Leonard LJ; Townsend D; King RA
    Biochemistry; 1988 Aug; 27(16):6156-9. PubMed ID: 3142518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study.
    Okuda H; Yoshino K; Wakamatsu K; Ito S; Sota T
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):664-7. PubMed ID: 24750564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [UV-vis spectroscopic study of the effect of Cu(II) ions on dopachrome].
    Di JW; Tu YF; Zhang F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jul; 24(7):834-6. PubMed ID: 15766084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral pH and copper ions promote eumelanogenesis after the dopachrome stage.
    Ito S; Suzuki N; Takebayashi S; Commo S; Wakamatsu K
    Pigment Cell Melanoma Res; 2013 Nov; 26(6):817-25. PubMed ID: 23844795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and polymerization studies of organic-soluble eumelanins.
    Lawrie KJ; Meredith P; McGeary RP
    Photochem Photobiol; 2008; 84(3):632-8. PubMed ID: 18282186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical characterization of eumelanins with special emphasis on 5,6-dihydroxyindole-2-carboxylic acid content and molecular size.
    Ozeki H; Wakamatsu K; Ito S; Ishiguro I
    Anal Biochem; 1997 May; 248(1):149-57. PubMed ID: 9177734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.