These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1409541)

  • 1. Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603.
    Lee FS; Chu ZT; Bolger MB; Warshel A
    Protein Eng; 1992 Apr; 5(3):215-28. PubMed ID: 1409541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions.
    Singh N; Warshel A
    Proteins; 2010 May; 78(7):1705-23. PubMed ID: 20186976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic contributions to protein-protein binding affinities: application to Rap/Raf interaction.
    Muegge I; Schweins T; Warshel A
    Proteins; 1998 Mar; 30(4):407-23. PubMed ID: 9533625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
    Aqvist J; Warshel A
    Biophys J; 1989 Jul; 56(1):171-82. PubMed ID: 2473789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the specificity of antibody/antigen interactions: phosphocholine binding to McPC603 and the correlation of three-dimensional structure and sequence data.
    Padlan EA; Cohen GH; Davies DR
    Ann Inst Pasteur Immunol (1985); 1985; 136C(2):271-6. PubMed ID: 3890687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast estimate of electrostatic group contributions to the free energy of protein-inhibitor binding.
    Muegge I; Tao H; Warshel A
    Protein Eng; 1997 Dec; 10(12):1363-72. PubMed ID: 9542997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins.
    Churg AK; Warshel A
    Biochemistry; 1986 Apr; 25(7):1675-81. PubMed ID: 3011070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2011 Jun; 133(21):8059-61. PubMed ID: 21545145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of multivalency in the affinity chromatography of antibodies. Appendix: Derivation and evaluation of equations for independent bivalent interacting systems in quantitative affinity chromatography.
    Eilat D; Chaiken IM; McCormick WM
    Biochemistry; 1979 Mar; 18(5):790-5. PubMed ID: 420816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.
    Laitinen T; Kankare JA; Peräkylä M
    Proteins; 2004 Apr; 55(1):34-43. PubMed ID: 14997538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins.
    Sham YY; Muegge I; Warshel A
    Biophys J; 1998 Apr; 74(4):1744-53. PubMed ID: 9545037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic contributions to protein stability and folding energy.
    Roca M; Messer B; Warshel A
    FEBS Lett; 2007 May; 581(10):2065-71. PubMed ID: 17466986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Hamiltonian in FEP Calculations for Reducing the Computational Cost of Electrostatic Interactions.
    Oshima H; Sugita Y
    J Chem Inf Model; 2022 Jun; 62(11):2846-2856. PubMed ID: 35639709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions.
    Froloff N; Windemuth A; Honig B
    Protein Sci; 1997 Jun; 6(6):1293-301. PubMed ID: 9194189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of hapten-antibody interactions in McPC603 by 1 H and 31 P NMR spectroscopy.
    Gettins P; Potter M; Rudikoff S; Dwek RA
    FEBS Lett; 1977 Dec; 84(1):87-91. PubMed ID: 590531
    [No Abstract]   [Full Text] [Related]  

  • 20. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.