BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1409554)

  • 1. Design, synthesis and structure of an amphipathic peptide with pH-inducible haemolytic activity.
    Moser R
    Protein Eng; 1992 Jun; 5(4):323-31. PubMed ID: 1409554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements.
    Kojima S; Kuriki Y; Sato Y; Arisaka F; Kumagai I; Takahashi S; Miura K
    Biochim Biophys Acta; 1996 May; 1294(2):129-37. PubMed ID: 8645730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent bilayer destabilization by an amphipathic peptide.
    Subbarao NK; Parente RA; Szoka FC; Nadasdi L; Pongracz K
    Biochemistry; 1987 Jun; 26(11):2964-72. PubMed ID: 2886149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature--models for protein folding and halophilic proteins.
    Ramalingam K; Aimoto S; Bello J
    Biopolymers; 1992 Aug; 32(8):981-92. PubMed ID: 1420981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability.
    Lee S; Iwata T; Oyagi H; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G
    Biochim Biophys Acta; 1993 Sep; 1151(1):76-82. PubMed ID: 7689337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical formation in isolated fragments of bovine growth hormone.
    Brems DN; Plaisted SM; Kauffman EW; Lund M; Lehrman SR
    Biochemistry; 1987 Dec; 26(24):7774-8. PubMed ID: 3427103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling.
    Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA
    Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.
    Ng DP; Deber CM
    Biochemistry; 2016 Aug; 55(31):4306-15. PubMed ID: 27434090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation, pore-forming activity, and antigenicity of synthetic peptide analogues of a spiralin putative amphipathic alpha helix.
    Brenner C; Duclohier H; Krchnák V; Wróblewski H
    Biochim Biophys Acta; 1995 May; 1235(2):161-8. PubMed ID: 7538789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a pH-sensitive pore-forming peptide with improved performance.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jan; 63(1):9-16. PubMed ID: 14984568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design and structure-activity relationships of peptide emulsifiers and foaming agents.
    Enser M; Bloomberg GB; Brock C; Clark DC
    Int J Biol Macromol; 1990 Apr; 12(2):118-24. PubMed ID: 2078528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.
    Parente RA; Nadasdi L; Subbarao NK; Szoka FC
    Biochemistry; 1990 Sep; 29(37):8713-9. PubMed ID: 2271551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of amphipathic alpha-helical and beta-helical conformations in synthetic peptides in the presence and absence of ionic interactions.
    Lazo ND; Downing DT
    J Pept Res; 1998 Jan; 51(1):85-9. PubMed ID: 9495596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.