These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 1409566)
1. Functional roles of amino acid residues involved in forming the alpha-helix-turn-alpha-helix operator DNA binding motif of Tet repressor from Tn10. Baumeister R; Müller G; Hecht B; Hillen W Proteins; 1992 Oct; 14(2):168-77. PubMed ID: 1409566 [TBL] [Abstract][Full Text] [Related]
2. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892 [TBL] [Abstract][Full Text] [Related]
4. Stepwise selection of TetR variants recognizing tet operator 4C with high affinity and specificity. Helbl V; Hillen W J Mol Biol; 1998 Feb; 276(2):313-8. PubMed ID: 9512703 [TBL] [Abstract][Full Text] [Related]
5. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748 [TBL] [Abstract][Full Text] [Related]
6. Stepwise selection of TetR variants recognizing tet operator 6C with high affinity and specificity. Helbl V; Tiebel B; Hillen W J Mol Biol; 1998 Feb; 276(2):319-24. PubMed ID: 9512704 [TBL] [Abstract][Full Text] [Related]
7. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. Baumeister R; Helbl V; Hillen W J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055 [TBL] [Abstract][Full Text] [Related]
9. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation. Gillette WK; Martin RG; Rosner JL J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449 [TBL] [Abstract][Full Text] [Related]
10. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. Hamed MY; Al-Jabour S J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380 [TBL] [Abstract][Full Text] [Related]
11. Structure of the LexA repressor-DNA complex probed by affinity cleavage and affinity photo-cross-linking. Dumoulin P; Ebright RH; Knegtel R; Kaptein R; Granger-Schnarr M; Schnarr M Biochemistry; 1996 Apr; 35(14):4279-86. PubMed ID: 8605176 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroscopic analysis of Tet repressor-operator DNA interaction in deuterium oxide. Krafft C; Hinrichs W; Orth P; Saenger W; Welfle H Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):239-50. PubMed ID: 9551655 [TBL] [Abstract][Full Text] [Related]
13. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. Domínguez-Cuevas P; Marín P; Marqués S; Ramos JL J Mol Biol; 2008 Jan; 375(1):59-69. PubMed ID: 18005985 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Navarro-Avilés G; Jiménez MA; Pérez-Marín MC; González C; Rico M; Murillo FJ; Elías-Arnanz M; Padmanabhan S Mol Microbiol; 2007 Feb; 63(4):980-94. PubMed ID: 17233828 [TBL] [Abstract][Full Text] [Related]
15. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699 [TBL] [Abstract][Full Text] [Related]
17. Probing the physical basis for trp repressor-operator recognition. Grillo AO; Brown MP; Royer CA J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Kwon HJ; Bennik MH; Demple B; Ellenberger T Nat Struct Biol; 2000 May; 7(5):424-30. PubMed ID: 10802742 [TBL] [Abstract][Full Text] [Related]
19. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010 [TBL] [Abstract][Full Text] [Related]
20. A map of the biotin repressor-biotin operator interface: binding of a winged helix-turn-helix protein dimer to a forty base-pair site. Streaker ED; Beckett D J Mol Biol; 1998 May; 278(4):787-800. PubMed ID: 9614942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]