BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1409580)

  • 1. Early regional specification for a molecular neuronal phenotype in the rat neocortex.
    Arimatsu Y; Miyamoto M; Nihonmatsu I; Hirata K; Uratani Y; Hatanaka Y; Takiguchi-Hayashi K
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):8879-83. PubMed ID: 1409580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cogeneration of neurons with a unique molecular phenotype in layers V and VI of widespread lateral neocortical areas in the rat.
    Arimatsu Y; Nihonmatsu I; Hirata K; Takiguchi-Hayashi K
    J Neurosci; 1994 Apr; 14(4):2020-31. PubMed ID: 8158255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latexin: a molecular marker for regional specification in the neocortex.
    Arimatsu Y
    Neurosci Res; 1994 Aug; 20(2):131-5. PubMed ID: 7808696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early patterning of the rat cerebral wall for regional organization of a neuronal population expressing latexin.
    Arimatsu Y; Ishida M
    Brain Res Dev Brain Res; 1998 Mar; 106(1-2):71-8. PubMed ID: 9554959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral cortical specification by early potential restriction of progenitor cells and later phenotype control of postmitotic neurons.
    Arimatsu Y; Ishida M; Takiguchi-Hayashi K; Uratani Y
    Development; 1999 Feb; 126(4):629-38. PubMed ID: 9895311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral cortical progenitors are fated to produce region-specific neuronal populations.
    Ferri RT; Levitt P
    Cereb Cortex; 1993; 3(3):187-98. PubMed ID: 8324369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex.
    Arimatsu Y; Kojima M; Ishida M
    Neuroscience; 1999 Jan; 88(1):93-105. PubMed ID: 10051192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A monoclonal antibody against a neuron-specific 65-kDa protein with laminar expression in the developing cerebral cortex.
    Junghans U; Franken S; Pommer A; Müller HW; Viebahn C; Kappler J
    Histochem Cell Biol; 2002 Apr; 117(4):317-25. PubMed ID: 11976904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell migration in the rat embryonic neocortex.
    Bayer SA; Altman J; Russo RJ; Dai XF; Simmons JA
    J Comp Neurol; 1991 May; 307(3):499-516. PubMed ID: 1856333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of transmitter phenotypes in rat cerebral cortex.
    Götz M; Bolz J
    Eur J Neurosci; 1994 Jan; 6(1):18-32. PubMed ID: 7907521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern formation in the developing mammalian forebrain: selective adhesion of early but not late postmitotic cortical and striatal neurons within forebrain reaggregate cultures.
    Krushel LA; van der Kooy D
    Dev Biol; 1993 Jul; 158(1):145-62. PubMed ID: 8330669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular heterogeneity of progenitors and radial migration in the developing cerebral cortex revealed by transgene expression.
    Soriano E; Dumesnil N; Auladell C; Cohen-Tannoudji M; Sotelo C
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11676-80. PubMed ID: 8524827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracortical regionality represented by specific transcription for a novel protein, latexin.
    Hatanaka Y; Uratani Y; Takiguchi-Hayashi K; Omori A; Sato K; Miyamoto M; Arimatsu Y
    Eur J Neurosci; 1994 Jun; 6(6):973-82. PubMed ID: 7524963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats.
    Fukuda T; Kawano H; Ohyama K; Li HP; Takeda Y; Oohira A; Kawamura K
    J Comp Neurol; 1997 Jun; 382(2):141-52. PubMed ID: 9183685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro clonal analysis of rat cerebral cortical neurons expressing latexin, a subtype-specific molecular marker of glutamatergic neurons.
    Takiguchi-Hayashi K
    Brain Res Dev Brain Res; 2001 Dec; 132(1):87-90. PubMed ID: 11744110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruiting new neurons from the subventricular zone to the rat postnatal cortex: an organotypic slice culture model.
    Dayer AG; Jenny B; Potter G; Sauvain MO; Szabó G; Vutskits L; Gascon E; Kiss JZ
    Eur J Neurosci; 2008 Mar; 27(5):1051-60. PubMed ID: 18364030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophins and basic fibroblast growth factor induce the differentiation of calbindin-containing neurons in the cerebral cortex.
    Pappas IS; Parnavelas JG
    Exp Neurol; 1997 Apr; 144(2):302-14. PubMed ID: 9168831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex.
    Walsh C; Cepko CL
    Science; 1992 Jan; 255(5043):434-40. PubMed ID: 1734520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex.
    Blanton MG; Kriegstein AR
    J Comp Neurol; 1991 Aug; 310(4):558-70. PubMed ID: 1719040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.