These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 1409649)

  • 21. Cloning and sequence of a 3.835 kbp DNA fragment containing the HIS4 gene and a fragment of a PEX5-like gene from Candida albicans.
    Navarro-García F; Pérez-Díaz RM; Negredo AI; Pla J; Nombela C
    Yeast; 1998 Sep; 14(12):1147-57. PubMed ID: 9778800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.
    Leberer E; Harcus D; Broadbent ID; Clark KL; Dignard D; Ziegelbauer K; Schmidt A; Gow NA; Brown AJ; Thomas DY
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13217-22. PubMed ID: 8917571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway.
    Dodou E; Treisman R
    Mol Cell Biol; 1997 Apr; 17(4):1848-59. PubMed ID: 9121433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid.
    Köhler GA; White TC; Agabian N
    J Bacteriol; 1997 Apr; 179(7):2331-8. PubMed ID: 9079920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin.
    Roy A; Lu CF; Marykwas DL; Lipke PN; Kurjan J
    Mol Cell Biol; 1991 Aug; 11(8):4196-206. PubMed ID: 2072914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and molecular characterisation of the POL3 gene from Candida albicans.
    Nolan T; Rosamond J
    Gene; 1996 Dec; 183(1-2):159-65. PubMed ID: 8996102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of a Candida albicans mating pheromone.
    Bennett RJ; Uhl MA; Miller MG; Johnson AD
    Mol Cell Biol; 2003 Nov; 23(22):8189-201. PubMed ID: 14585977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular characterization of SIG1, a Saccharomyces cerevisiae gene involved in negative regulation of G-protein-mediated signal transduction.
    Leberer E; Dignard D; Harcus D; Whiteway M; Thomas DY
    EMBO J; 1994 Jul; 13(13):3050-64. PubMed ID: 8039500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of the Candida albicans MOT2 gene.
    Zhao XJ; Calderone RA; Krueger KE; Choi G; Cihlar RL
    Med Mycol; 2001 Feb; 39(1):81-6. PubMed ID: 11270411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae.
    Hoppen J; Dietz M; Warsow G; Rohde R; Schüller HJ
    Mol Genet Genomics; 2007 Sep; 278(3):317-30. PubMed ID: 17588177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae.
    Ramer SW; Davis RW
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):452-6. PubMed ID: 8421676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of the Candida albicans PFY1 gene for profilin.
    Ostrander DB; Gorman JA
    Yeast; 1997 Jul; 13(9):871-80. PubMed ID: 9234675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis.
    Boone C; Sdicu A; Laroche M; Bussey H
    J Bacteriol; 1991 Nov; 173(21):6859-64. PubMed ID: 1938890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants.
    Perlman R; Yablonski D; Simchen G; Levitzki A
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5474-8. PubMed ID: 8516289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning of the CRM1 gene from Candida albicans.
    Raymond M; Dignard D; Alarco AM; Clark KL; Weber S; Whiteway M; Leberer E; Thomas DY
    Yeast; 2000 Apr; 16(6):531-8. PubMed ID: 10790690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and sequence analysis of the gene encoding translation elongation factor 3 from Candida albicans.
    Di Domenico BJ; Lupisella J; Sandbaken M; Chakraburtty K
    Yeast; 1992 May; 8(5):337-52. PubMed ID: 1626427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single-copy suppressor of the Saccharomyces cerevisae late-mitotic mutants cdc15 and dbf2 is encoded by the Candida albicans CDC14 gene.
    Jiménez J; Cid VJ; Nombela C; Sánchez M
    Yeast; 2001 Jun; 18(9):849-58. PubMed ID: 11427967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Candida albicans SSD1 can suppress multiple mutations in Saccharomyces cerevisiae.
    Chen CY; Rosamondt J
    Microbiology (Reading); 1998 Nov; 144 ( Pt 11)():2941-2950. PubMed ID: 9846729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of heterologous expression of Candida albicans SEC61 gene reveals differences in Sec61p homologues related to species-specific functionality.
    de la Rosa JM; Ruiz T; Fonzi WA; Rodríguez L
    Fungal Genet Biol; 2004 Oct; 41(10):941-53. PubMed ID: 15341916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.