These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14098183)

  • 21. SOME ENERGY LINKED REACTIONS IN THE KEILIN-HARTREE HEART MUSCLE PREPARATION.
    KETTMAN J
    Biochem Biophys Res Commun; 1965 Apr; 19():237-42. PubMed ID: 14332450
    [No Abstract]   [Full Text] [Related]  

  • 22. [Histochemical studies on succinic and malic acid dehydrogenases and DPN and TPN diaphorases in experimental myocardial infarction].
    LUSHNIKOV EF
    Biull Eksp Biol Med; 1962 Apr; 53():115-20. PubMed ID: 14467502
    [No Abstract]   [Full Text] [Related]  

  • 23. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 25. STUDIES ON A SUCCINATE-NEOTETRAZOLIUM REDUCTASE SYSTEM OF RAT LIVER. II. POINTS OF COUPLING WITH THE RESPIRATORY CHAIN.
    SLATER TF
    Biochim Biophys Acta; 1963 Nov; 77():365-82. PubMed ID: 14089412
    [No Abstract]   [Full Text] [Related]  

  • 26. INHIBITION OF OXIDATIVE PHOSPHORYLATION IN ESCHERICHIA COLI BY DIHYDROSTREPTOMYCIN.
    BRAGG PD; POLGLASE WJ
    J Bacteriol; 1963 Dec; 86(6):1236-40. PubMed ID: 14086095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [THE EFFECT OF INHIBITORS OF OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA OF ENDOMYCES MAGNUSII YEASTS].
    KOTELNIKOVA AV; ZVIAGILSKAIA RA
    Mikrobiologiia; 1964; 33():204-9. PubMed ID: 14204013
    [No Abstract]   [Full Text] [Related]  

  • 28. STUDIES ON SUCCINATE DEHYDROGENASE. I. SPECTRAL PROPERTIES OF THE PURIFIED ENZYME AND FORMATION OF ENZYME-COMPETITIVE INHIBITOR COMPLEXES.
    DERVARTANIAN DV; VEEGER C
    Biochim Biophys Acta; 1964 Nov; 92():233-47. PubMed ID: 14249115
    [No Abstract]   [Full Text] [Related]  

  • 29. ELECTRON-TRANSPORT ENZYMES OF CALF THYROID.
    DEGROOT LJ; DUNN AD
    Biochim Biophys Acta; 1964 Nov; 92():205-22. PubMed ID: 14249113
    [No Abstract]   [Full Text] [Related]  

  • 30. THE ROLE OF LIPOPHILIC QUINONES IN THE ELECTRON TRANSPORT SYSTEM OF ESCHERICHIA COLI.
    ITAGAKI E
    J Biochem; 1964 Apr; 55():432-45. PubMed ID: 14170096
    [No Abstract]   [Full Text] [Related]  

  • 31. OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA ISOLATED FROM EUGLENA GRACILIS.
    BUETOW DE; BUCHANAN PJ
    Biochim Biophys Acta; 1965 Jan; 96():9-17. PubMed ID: 14285272
    [No Abstract]   [Full Text] [Related]  

  • 32. WATER CONTENT OF PAPER AS A VARIABLE IN PAPER CHROMATOGRAPHY.
    TOMISEK AJ; ALLAN PW
    J Chromatogr; 1964 Apr; 14():232-7. PubMed ID: 14165959
    [No Abstract]   [Full Text] [Related]  

  • 33. METABOLISM OF FUMARIC ACID IN ERYTHROCYTES.
    MIRCEVOVA L; BICANOVA J
    Physiol Bohemoslov (1956); 1965; 14():289-93. PubMed ID: 14328563
    [No Abstract]   [Full Text] [Related]  

  • 34. OXIDATIVE PHOSPHORYLATION IN LIVER MITOCHONDRIA FROM COLD-ACCLIMATED RATS.
    ALDRIDGE WN; STONER HB
    Biochim Biophys Acta; 1963 Dec; 78():736-9. PubMed ID: 14089455
    [No Abstract]   [Full Text] [Related]  

  • 35. STUDIES ON SPECIFIC ENZYME INHIBITORS. 8. ENZYME-REGULATORY MECHANISM OF THE ENTRY OF GLUTAMIC ACID INTO METABOLIC PATHWAYS IN KIDNEY TISSUE.
    KUN E; AYLING JE; BALTIMORE BG
    J Biol Chem; 1964 Sep; 239():2896-904. PubMed ID: 14216441
    [No Abstract]   [Full Text] [Related]  

  • 36. SYNTHESIS OF GLUTAMATE FROM ALPHA-OXOGLUTARATE AND AMMONIA IN RAT-LIVER MITOCHONDRIA. IV. REDUCTION OF NICOTINAMIDE NUCLEOTIDE COUPLED WITH THE AEROBIC OXIDATION OF TETRAMETHYL-RHO-PHENYLENEDIAMINE.
    TAGER JM; HOWLAND JL; SLATER EC; SNOSWELL AM
    Biochim Biophys Acta; 1963 Oct; 77():266-75. PubMed ID: 14090444
    [No Abstract]   [Full Text] [Related]  

  • 37. EFFECT OF GLUCOSE ON THE UTILIZATION OF SUCCINATE AND THE ACTIVITY OF TRICARBOXYLIC ACID-CYCLE ENZYMES IN ESCHERICHIA COLI.
    HALPERN YS; EVEN-SHOSHAN A; ARTMAN M
    Biochim Biophys Acta; 1964 Nov; 93():228-36. PubMed ID: 14251300
    [No Abstract]   [Full Text] [Related]  

  • 38. THE REVERSIBILITY OF INHIBITION BY 2-HEPTYL-4-HYDROXYQUINOLINE-N-OXIDE AND 2-HYDROXY-3(3-METHYLBUTYL)-1,4-NAPHTHOQUINONE OF SUCCINATE OXIDATION.
    HOWLAND JL
    Biochim Biophys Acta; 1963 Aug; 73():665-7. PubMed ID: 14074146
    [No Abstract]   [Full Text] [Related]  

  • 39. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase.
    Barnes EM; Kaback HR
    Proc Natl Acad Sci U S A; 1970 Aug; 66(4):1190-8. PubMed ID: 4394455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SUCCINATE DEHYDROGENASE IN THE ERGOT FUNGUS CLAVICEPS PURPUREA.
    MCDONALD JK; ANDERSON JA; CHELDELIN VH; KING TE
    Biochim Biophys Acta; 1963 Aug; 73():533-49. PubMed ID: 14074129
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.