These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1409899)
1. Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat. Burdin TA; Graeff FG; Pelá IR Physiol Behav; 1992 Sep; 52(3):405-10. PubMed ID: 1409899 [TBL] [Abstract][Full Text] [Related]
2. Aversive and antiaversive effects of morphine in the dorsal periaqueductal gray of rats submitted to the elevated plus-maze test. Motta V; Brandão ML Pharmacol Biochem Behav; 1993 Jan; 44(1):119-25. PubMed ID: 8430116 [TBL] [Abstract][Full Text] [Related]
3. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968 [TBL] [Abstract][Full Text] [Related]
4. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors. Sestile CC; Maraschin JC; Gama VS; Zangrossi H; Graeff FG; Audi EA Neuropharmacology; 2017 Sep; 123():80-87. PubMed ID: 28554847 [TBL] [Abstract][Full Text] [Related]
5. Brain sites involved in the antinociceptive effect of bradykinin in rats. Couto LB; Corrêa FM; Pelá IR Br J Pharmacol; 1998 Dec; 125(7):1578-84. PubMed ID: 9884087 [TBL] [Abstract][Full Text] [Related]
6. Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat. Morgan MM; Depaulis A; Liebeskind JC Brain Res; 1987 Oct; 423(1-2):395-8. PubMed ID: 3676817 [TBL] [Abstract][Full Text] [Related]
7. Pain relief by electrical stimulation of the periaqueductal and periventricular gray matter. Evidence for a non-opioid mechanism. Young RF; Chambi VI J Neurosurg; 1987 Mar; 66(3):364-71. PubMed ID: 3493333 [TBL] [Abstract][Full Text] [Related]
8. Analgesia from the periaqueductal gray in the developing rat: focal injections of morphine or glutamate and effects of intrathecal injection of methysergide or phentolamine. Tive LA; Barr GA Brain Res; 1992 Jul; 584(1-2):92-109. PubMed ID: 1355395 [TBL] [Abstract][Full Text] [Related]
9. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057 [TBL] [Abstract][Full Text] [Related]
10. Tolerance to the antinociceptive effect of morphine microinjections into the ventral but not lateral-dorsal periaqueductal gray of the rat. Tortorici V; Robbins CS; Morgan MM Behav Neurosci; 1999 Aug; 113(4):833-9. PubMed ID: 10495091 [TBL] [Abstract][Full Text] [Related]
11. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Pavlovic ZW; Cooper ML; Bodnar RJ Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699 [TBL] [Abstract][Full Text] [Related]
12. Central B2 receptor involvement in the antinociceptive effect of bradykinin in rats. Pelá IR; Rosa AL; Silva CA; Huidobro-Toro JP Br J Pharmacol; 1996 Jul; 118(6):1488-92. PubMed ID: 8832076 [TBL] [Abstract][Full Text] [Related]
13. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation. Marek P; Yirmiya R; Liebeskind JC Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617 [TBL] [Abstract][Full Text] [Related]
14. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Campion KN; Saville KA; Morgan MM Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986 [TBL] [Abstract][Full Text] [Related]
16. Comparison of intradermal and subcutaneous hyperalgesic effects of inflammatory mediators in the rat. Khasar SG; Green PG; Levine JD Neurosci Lett; 1993 Apr; 153(2):215-8. PubMed ID: 8100992 [TBL] [Abstract][Full Text] [Related]
17. Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Nogueira RL; Graeff FG Pharmacol Biochem Behav; 1995 Sep; 52(1):1-6. PubMed ID: 7501649 [TBL] [Abstract][Full Text] [Related]
18. The effects of naloxone administered into the periaqueductal gray on shock-elicited freezing behavior in the rat. Hammer GD; Kapp BS Behav Neural Biol; 1986 Sep; 46(2):189-95. PubMed ID: 3767831 [TBL] [Abstract][Full Text] [Related]
19. Naloxone blocks opioid peptide release in periaqueductal gray and amygdala elicited by morphine injected into N. accumbens. Ma QP; Han JS Peptides; 1992; 13(2):261-5. PubMed ID: 1409005 [TBL] [Abstract][Full Text] [Related]
20. Blockade of mu- and activation of kappa-opioid receptors in the dorsal periaqueductal gray matter produce defensive behavior in rats tested in the elevated plus-maze. Nobre MJ; Ribeiro dos Santos N; Aguiar MS; Brandão ML Eur J Pharmacol; 2000 Sep; 404(1-2):145-51. PubMed ID: 10980273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]