BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1410420)

  • 1. Developmental neuron-glia interactions: role of serotonin innervation upon the differentiation of the ependymocytes of the rat subcommissural organ.
    Didier-Bazes M; Chouaf L; Hardin H; Aguera M; Voutsinos B; Belin MF
    Prog Brain Res; 1992; 91():343-7. PubMed ID: 1410420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal control of [3H]GABA uptake in the ependymocytes of the subcommissural organ: an in vivo model of neuron-glia interaction.
    Didier-Bazes M; Aguera M; Chouaf L; Harandi M; Calas A; Meiniel A; Belin MF
    Brain Res; 1989 Jun; 489(1):137-45. PubMed ID: 2525944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental neuron-glia interaction: role of the serotonin innervation upon the onset of GABA uptake into the ependymocytes of the rat subcommissural organ.
    Didier-Bazes M; Chouaf L; Hardin H; Aguera M; Fèvre-Montange M; Belin MF
    Brain Res Dev Brain Res; 1991 Nov; 63(1-2):135-9. PubMed ID: 1790586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental expression of glial markers in ependymocytes of the rat subcommissural organ: role of the environment.
    Chouaf L; Didier-Bazes M; Hardin H; Aguera M; Fevre-Montange M; Voutsinos B; Belin MF
    Cell Tissue Res; 1991 Dec; 266(3):553-61. PubMed ID: 1811884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABA uptake and phenotypic characteristics of the subcommissural ependymocytes of the semi-desertic rodent, Meriones shawi: correlation with serotoninergic innervation.
    Laalaoui A; Chouaf L; Didier-Bazes M; Geffard M; Belin MF; Gamrani H
    Cell Tissue Res; 1996 Sep; 285(3):435-43. PubMed ID: 8772158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell lineage of the subcommissural organ secretory ependymocytes: differentiating role of the environment.
    Didier-Bazès M; Chouaf-Lakhdar L; Dutuit M; Aguera M; Belin MF
    Microsc Res Tech; 2001 Mar; 52(5):461-7. PubMed ID: 11241857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropism of serotonergic neurons towards glial targets in the rat ependyma.
    Voutsinos B; Chouaf L; Mertens P; Ruiz-Flandes P; Joubert Y; Belin MF; Didier-Bazes M
    Neuroscience; 1994 Apr; 59(3):663-72. PubMed ID: 8008212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative marker analysis of the ependymocytes of the subcommissural organ in four different mammalian species.
    Chouaf L; Didier-Bazes M; Aguera M; Tardy M; Sallanon M; Kitahama K; Belin MF
    Cell Tissue Res; 1989 Aug; 257(2):255-62. PubMed ID: 2570632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural input and neural control of the subcommissural organ.
    Jiménez AJ; Fernández-Llebrez P; Pérez-Fígares JM
    Microsc Res Tech; 2001 Mar; 52(5):520-33. PubMed ID: 11241862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radioautographic evidence for an innervation of the subcommissural organ by GABA-containing nerve fibres.
    Gamrani H; Belin MF; Aguera M; Calas A; Pujol JF
    J Neurocytol; 1981 Jun; 10(3):411-24. PubMed ID: 7310459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal secretion of the subcommissural organ of the Meriones shawi: control of serotonin innervation.
    Laalaoui A; Ahboucha S; Didier-Bazes M; Fèvre-Montange M; Meiniel A; Gamrani H
    Brain Res Dev Brain Res; 2001 Jan; 126(1):75-80. PubMed ID: 11172888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and maturation of axo-glandular synapses and concomitant changes in the target cells of the rat subcommissural organ.
    Marcinkiewicz M; Bouchaud C
    Biol Cell; 1986; 56(1):57-65. PubMed ID: 2941098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a multiple innervation of subcommissural ependymocytes in the rat.
    Bouchaud C
    Neurosci Lett; 1979 May; 12(2-3):253-8. PubMed ID: 460719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotoninergic synapses on ependymal and hypendymal cells of the rat subcommissural organ.
    Møllgård K; Wiklund L
    J Neurocytol; 1979 Aug; 8(4):445-67. PubMed ID: 490190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material.
    Schöbitz K; Gonzalez C; Peruzzo B; Yulis CR; Rodríguez EM
    Microsc Res Tech; 2001 Mar; 52(5):496-509. PubMed ID: 11241860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rat SCO responsiveness to prolonged water deprivation: implication of Reissner's fiber and serotonin system.
    Chatoui H; El Hiba O; Elgot A; Gamrani H
    C R Biol; 2012 Apr; 335(4):253-60. PubMed ID: 22578571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative development of the subcommissural organ in hypothyroid mice.
    Ferres-Torres R; Castańeyra-Perdomo A; Ramos-Navarro J
    Brain Res; 1985 Apr; 331(2):348-52. PubMed ID: 3986574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunohistochemical localization of glial fibrillary acidic protein (GFAP) and vimentin in the subcommissural organ of the Mongolian gerbil (Meriones unguiculatus).
    Redecker P
    Cell Tissue Res; 1989 Mar; 255(3):595-600. PubMed ID: 2706660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription of SCO-spondin in the subcommissural organ: evidence for down-regulation mediated by serotonin.
    Richter HG; Tomé MM; Yulis CR; Vío KJ; Jiménez AJ; Pérez-Fígares JM; Rodríguez EM
    Brain Res Mol Brain Res; 2004 Oct; 129(1-2):151-62. PubMed ID: 15469891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ependymocytes of the bovine subcommissural organ are functionally coupled through gap junctions.
    González CA; Garcés G; Sáez JC; Schöbitz K; Rodríguez EM
    Neurosci Lett; 1999 Mar; 262(3):175-8. PubMed ID: 10218884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.