These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1410424)

  • 1. Integrative mechanisms and the maintenance of cardiovascular and body fluid homeostasis: the central processing of sensory input derived from the circumventricular organs of the lamina terminalis.
    Johnson AK; Zardetto-Smith AM; Edwards GL
    Prog Brain Res; 1992; 91():381-93. PubMed ID: 1410424
    [No Abstract]   [Full Text] [Related]  

  • 2. Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis.
    Johnson AK; Cunningham JT; Thunhorst RL
    Clin Exp Pharmacol Physiol; 1996 Feb; 23(2):183-91. PubMed ID: 8819650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurohumoral Integration of Cardiovascular Function by the Lamina Terminalis.
    Cancelliere NM; Black EA; Ferguson AV
    Curr Hypertens Rep; 2015 Dec; 17(12):93. PubMed ID: 26531751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anteroventral wall of the third ventricle and dorsal lamina terminalis: headquarters for control of body fluid homeostasis?
    McKinley MJ; Pennington GL; Oldfield BJ
    Clin Exp Pharmacol Physiol; 1996 Apr; 23(4):271-81. PubMed ID: 8717061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis.
    Johnson AK
    Brain Res Bull; 1985 Dec; 15(6):595-601. PubMed ID: 3910170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis.
    McKinley MJ; Allen AM; May CN; McAllen RM; Oldfield BJ; Sly D; Mendelsohn FA
    Clin Exp Pharmacol Physiol; 2001 Dec; 28(12):990-2. PubMed ID: 11903300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings of the International Symposium "Neuroendocrine Control of Body Fluid Homeostasis". Brazil, August 17-20, 1996.
    Braz J Med Biol Res; 1997 Apr; 30(4):427-552. PubMed ID: 9376818
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the central nervous system neuropeptides in body fluid homeostasis.
    Palkovits M
    J Physiol (Paris); 1984; 79(6):428-31. PubMed ID: 6399310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis.
    McKinley MJ; Yao ST; Uschakov A; McAllen RM; Rundgren M; Martelli D
    Acta Physiol (Oxf); 2015 May; 214(1):8-32. PubMed ID: 25753944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extended amygdala and salt appetite.
    Johnson AK; de Olmos J; Pastuskovas CV; Zardetto-Smith AM; Vivas L
    Ann N Y Acad Sci; 1999 Jun; 877():258-80. PubMed ID: 10415654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efferent neural pathways of the lamina terminalis subserving osmoregulation.
    McKinley MJ; Bicknell RJ; Hards D; McAllen RM; Vivas L; Weisinger RS; Oldfield BJ
    Prog Brain Res; 1992; 91():395-402. PubMed ID: 1410425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen and the central control of body fluid balance.
    Curtis KS
    Physiol Behav; 2009 May; 97(2):180-92. PubMed ID: 19268483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-specific neuroendocrine responses to osmotic challenges in apelin receptor knockout mice.
    Roberts EM; Pope GR; Newson MJ; Landgraf R; Lolait SJ; O'Carroll AM
    J Neuroendocrinol; 2010 Apr; 22(4):301-8. PubMed ID: 20136689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory circumventricular organs and brain homeostatic pathways.
    Johnson AK; Gross PM
    FASEB J; 1993 May; 7(8):678-86. PubMed ID: 8500693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the vagus nerve and lamina terminalis to brain activation induced by refeeding.
    Timofeeva E; Baraboi ED; Richard D
    Eur J Neurosci; 2005 Sep; 22(6):1489-501. PubMed ID: 16190902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent signaling and forebrain mechanisms in the behavioral control of extracellular fluid volume.
    Zardetto-Smith AM; Thunhorst RL; Cicha MZ; Johnson AK
    Ann N Y Acad Sci; 1993 Jul; 689():161-76. PubMed ID: 8373012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiology of supraoptic neurons in C57/BL mice studied in three acute in vitro preparations.
    Sharif-Naeini R; Ciura S; Stachniak TJ; Trudel E; Bourque CW
    Prog Brain Res; 2008; 170():229-42. PubMed ID: 18655886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The subfornical organ as a model of neurohumoral integration.
    Gross PM
    Brain Res Bull; 1985 Jul; 15(1):65-70. PubMed ID: 2862971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic Signaling in Body Fluid Homeostasis and Hypertension.
    Kinsman BJ; Nation HN; Stocker SD
    Curr Hypertens Rep; 2017 Jun; 19(6):50. PubMed ID: 28528375
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.