These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1411341)
1. Regenerative response to membranous and enchondral lyophilized allogeneic bone in rabbit skull defects. Isaksson S; Alberius P; Klinge B; Jönsson J; Hallberg E; Wendel M Scand J Plast Reconstr Surg Hand Surg; 1992; 26(2):147-53. PubMed ID: 1411341 [TBL] [Abstract][Full Text] [Related]
2. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects. Isaksson S Swed Dent J Suppl; 1992; 84():1-46. PubMed ID: 1334579 [TBL] [Abstract][Full Text] [Related]
3. Comparison of regenerative capacity elicited by demineralized bone matrix of different embryonic origins. Isaksson S; Alberius P J Craniomaxillofac Surg; 1992; 20(2):73-80. PubMed ID: 1569218 [TBL] [Abstract][Full Text] [Related]
4. Influence of three alloplastic materials on calvarial bone healing. An experimental evaluation of HTR-polymer, lactomer beads, and a carrier gel. Isaksson S; Alberius P; Klinge B Int J Oral Maxillofac Surg; 1993 Dec; 22(6):375-81. PubMed ID: 8106817 [TBL] [Abstract][Full Text] [Related]
5. Contribution of autogeneic membranous bone chips and bone paste to healing of rabbit skull defects. Isaksson S; Alberius P; Klinge B; Jönsson J Scand J Dent Res; 1992 Oct; 100(5):274-8. PubMed ID: 1411270 [TBL] [Abstract][Full Text] [Related]
6. Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Shand JM; Heggie AA; Holmes AD; Holmes W Int J Oral Maxillofac Surg; 2002 Oct; 31(5):525-31. PubMed ID: 12418569 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the osteogenic potential in experimental defects, with and without bone marrow, in the rabbit tibia: a pilot study. Veis A; Kougias K; Tsirlis A; Parisis N; Papadopoulou C; Romanos GE Int J Oral Maxillofac Implants; 2009; 24(6):1054-60. PubMed ID: 20162109 [TBL] [Abstract][Full Text] [Related]
8. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. Klinge B; Alberius P; Isaksson S; Jönsson J J Oral Maxillofac Surg; 1992 Mar; 50(3):241-9. PubMed ID: 1311759 [TBL] [Abstract][Full Text] [Related]
9. Cranioplasty in the growing canine skull using demineralized perforated bone. Salyer KE; Bardach J; Squier CA; Gendler E; Kelly KM Plast Reconstr Surg; 1995 Sep; 96(4):770-9. PubMed ID: 7652050 [TBL] [Abstract][Full Text] [Related]
10. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Borie E; Fuentes R; Del Sol M; Oporto G; Engelke W Ann Anat; 2011 Oct; 193(5):412-7. PubMed ID: 21802915 [TBL] [Abstract][Full Text] [Related]
11. Parathyroid hormone gene-activated matrix with DFDBA/collagen composite matrix enhances bone regeneration in rat calvarial bone defects. Lee PH; Yew TL; Lai YL; Lee SY; Chen HL J Chin Med Assoc; 2018 Aug; 81(8):699-707. PubMed ID: 29551486 [TBL] [Abstract][Full Text] [Related]
12. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340 [TBL] [Abstract][Full Text] [Related]
13. Surgical intervention in enchondral and membranous bone: intraindividual comparisons in the rabbit. Slotte C; Lundgren D; Sennerby L; Lundgren AK Clin Implant Dent Relat Res; 2003; 5(4):263-8. PubMed ID: 15127997 [TBL] [Abstract][Full Text] [Related]
14. Closure of critical sized defects with allogenic and alloplastic bone substitutes. Clokie CM; Moghadam H; Jackson MT; Sandor GK J Craniofac Surg; 2002 Jan; 13(1):111-21; discussion 122-3. PubMed ID: 11887007 [TBL] [Abstract][Full Text] [Related]
15. Scale-up of MSC under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model. Yew TL; Huang TF; Ma HL; Hsu YT; Tsai CC; Chiang CC; Chen WM; Hung SC J Orthop Res; 2012 Aug; 30(8):1213-20. PubMed ID: 22278907 [TBL] [Abstract][Full Text] [Related]
16. Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue. Lappalainen OP; Korpi R; Haapea M; Korpi J; Ylikontiola LP; Kallio-Pulkkinen S; Serlo WS; Lehenkari P; Sándor GK Childs Nerv Syst; 2015 Apr; 31(4):581-7. PubMed ID: 25391980 [TBL] [Abstract][Full Text] [Related]
17. Bone formation in calvarial defects of Sprague-Dawley rats by transplantation of calcium phosphate glass. Moon HJ; Kim KN; Kim KM; Choi SH; Kim CK; Kim KD; LeGeros RZ; Lee YK J Biomed Mater Res A; 2005 Sep; 74(3):497-502. PubMed ID: 15983995 [TBL] [Abstract][Full Text] [Related]
18. Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae. Bernabé PF; Melo LG; Cintra LT; Gomes-Filho JE; Dezan E; Nagata MJ Clin Oral Implants Res; 2012 Mar; 23(3):384-8. PubMed ID: 21443591 [TBL] [Abstract][Full Text] [Related]
19. Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes. Moghadam HG; Sándor GK; Holmes HH; Clokie CM J Oral Maxillofac Surg; 2004 Feb; 62(2):202-13. PubMed ID: 14762753 [TBL] [Abstract][Full Text] [Related]
20. Biologic properties of nano-hydroxyapatite: An in vivo study of calvarial defects, ectopic bone formation and bone implantation. Pang KM; Lee JK; Seo YK; Kim SM; Kim MJ; Lee JH Biomed Mater Eng; 2015; 25(1):25-38. PubMed ID: 25585978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]