These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14114934)

  • 1. RIBULOSE DIPHOSPHATE CARBOXYLASE IN THIORHODACEAE.
    HURLBERT RE; LASCELLES J
    J Gen Microbiol; 1963 Dec; 33():445-58. PubMed ID: 14114934
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthetic mechanism of ribulose-1,5-bisphosphate carboxylase in the purple photosynthetic bacterium, Chromatium vinosum.
    Kobayashi H; Akazawa T
    Arch Biochem Biophys; 1982 Apr; 214(2):531-9. PubMed ID: 6807199
    [No Abstract]   [Full Text] [Related]  

  • 3. THE POSITION OF CARBON-CARBON BOND CLEAVAGE IN THE RIBULOSE DIPHOSPHATE CARBOXYDISMUTASE REACTION.
    MUELLHOFER G; ROSE IA
    J Biol Chem; 1965 Mar; 240():1341-6. PubMed ID: 14284746
    [No Abstract]   [Full Text] [Related]  

  • 4. Catalytic role of subunit A in ribulose-1,5-diphosphate carboxylase from Chromatium strain D.
    Takabe T; Akazawa T
    Arch Biochem Biophys; 1973 Jul; 157(1):303-8. PubMed ID: 4716958
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthetic mechanism of ribulose-1,5-bisphosphate carboxylase in the purple photosynthetic bacterium, Chromatium vinosum. II. Biosynthesis of constituent subunits.
    Kobayashi H; Akazawa T
    Arch Biochem Biophys; 1982 Apr; 214(2):540-9. PubMed ID: 7092208
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthetic mechanism of ribulose-1,5-bisphosphate carboxylase in the purple photosynthetic bacterium, Chromatium vinosum. III. Absence of extrachromosomal DNA.
    Kobayashi H; Akazawa T
    Arch Biochem Biophys; 1983 Jul; 224(1):152-60. PubMed ID: 6870250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FINE CONTROL OF PHOSPHOPYRUVATE CARBOXYLASE ACTIVITY IN ESCHERICHIA COLI.
    CANOVAS JL; KORNBERG HL
    Biochim Biophys Acta; 1965 Jan; 96():169-72. PubMed ID: 14285262
    [No Abstract]   [Full Text] [Related]  

  • 8. PHOSPHOPYRUVATE CARBOXYLASE IN LIVER TUMORS OF DIFFERENT GROWTH RATES.
    WAGLE SR; MORRIS HP; WEBER G
    Biochim Biophys Acta; 1963 Dec; 78():783-5. PubMed ID: 14089473
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidative formation of phosphoglycolate from ribulose-1,5-diphosphate catalysed by Chromatium ribulose-1,5-diphosphate carboxylase.
    Takabe T; Akazawa T
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1173-9. PubMed ID: 4748814
    [No Abstract]   [Full Text] [Related]  

  • 10. [Formation of ribuloso-1,5-diphosphate carboxylase by Thiocapsa roseopersicina under different growth conditions].
    Zhukov VG
    Mikrobiologiia; 1976; 45(5):915-7. PubMed ID: 1004280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus.
    Chandra TS; Shethna YI
    J Bacteriol; 1977 Aug; 131(2):389-98. PubMed ID: 885836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE METABOLISM OF TARTARIC ACID BY A PSEUDOMONAS. A NEW PATHWAY.
    DAGLEY S; TRUDGILL PW
    Biochem J; 1963 Oct; 89(1):22-31. PubMed ID: 14097362
    [No Abstract]   [Full Text] [Related]  

  • 13. SULPHUR METABOLISM IN THIORHODACEAE. II. STOICHIOMETRIC RELATIONSHIP OF CO2 FIXATION TO OXIDATION OF HYDROGEN SULPHIDE AND INTRACELLULAR SULPHUR IN CHROMATIUM OKENII.
    TRUEPER HG
    Antonie Van Leeuwenhoek; 1964; 30():385-94. PubMed ID: 14274131
    [No Abstract]   [Full Text] [Related]  

  • 14. [Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation].
    Zakharchuk LM; Egorova MA; Tsaplina IA; Bogdanova TI; Krasil'nikova EN; Melamud VS; Karavaĭko GI
    Mikrobiologiia; 2003; 72(5):621-6. PubMed ID: 14679899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diversity of the ribulose-1,5-diphosphate carboxylase from photosynthetic microorganisms.
    Spomer GG
    Science; 1968 Aug; 161(3840):482-5. PubMed ID: 5659689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MECHANISM OF THE CARBOXYDISMUTASE REACTION. II. CARBOXYLATION OF THE ENZYME.
    AKOYUNOGLOU G; CALVIN M
    Biochem Z; 1963; 338():20-30. PubMed ID: 14087294
    [No Abstract]   [Full Text] [Related]  

  • 17. Study of the genetic control of ribulose 1,5-diphosphate carboxylase by use of activity- and electrophoretic variants of Lycopersicum species [proceedings].
    Cammaerts D; Jacobs M
    Arch Int Physiol Biochim; 1978 Oct; 86(4):849-50. PubMed ID: 84571
    [No Abstract]   [Full Text] [Related]  

  • 18. ROLE OF FERREDOXIN IN THE REDUCTIVE ASSIMILATION OF CO2 AND ACETATE BY EXTRACTS OF THE PHOTOSYNTHETIC BACTERIUM, CHROMATIUM.
    BUCHANAN BB; BACHOFEN R; ARNON DI
    Proc Natl Acad Sci U S A; 1964 Sep; 52(3):839-47. PubMed ID: 14212563
    [No Abstract]   [Full Text] [Related]  

  • 19. Small-angle x-ray scattering of D-ribulose-1,5-diphosphate carboxylase from Dasycladus clavaeformia Roth (Ag.) in solution.
    Paradies HH; Zimmer B; Werz G
    Biochem Biophys Res Commun; 1977 Jan; 74(2):397-404. PubMed ID: 836296
    [No Abstract]   [Full Text] [Related]  

  • 20. [Initial pathways of pyruvate metabolism in phototrophic bacteria].
    Krasil'nikova EN; Kondrat'eva EN
    Mikrobiologiia; 1974; 43(5):776-9. PubMed ID: 4374642
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.