These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14122)

  • 1. The reactive site of eggplant trypsin inhibitor.
    Yamada M; Tashiro M; Yamaguchi H; Yamada H; Ibuki F
    J Biochem; 1976 Dec; 80(6):1293-7. PubMed ID: 14122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position of the reactive site peptide bond in eggplant trypsin inhibitor molecule.
    Ibuki F; Kotaru M; Katsurada A; Asao T; Tashiro M; Kanamori M
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(2):119-26. PubMed ID: 7400862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of the active derivative bovine trypsin-kallikrein inhibitor (Kunitz) with the reactive site lysine-15 -- alanine-16 hydrolyzed.
    Jering H; Tschesche H
    Eur J Biochem; 1976 Jan; 61(2):443-52. PubMed ID: 942916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of arginine in the reactive site of proteinase inhibitors by selective and reversible derivatization of the arginine side chain.
    Dietl T; Tschesche H
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):657-65. PubMed ID: 964925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-enzymatic insertion of an amino acid residue in the reactive site of soybean trypsin inhibitor (Kunitz).
    Kowalski D; Laskowski M
    Biochemistry; 1976 Mar; 15(6):1309-15. PubMed ID: 1252450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor.
    Sealock RW; Laskowski M
    Biochemistry; 1969 Sep; 8(9):3703-10. PubMed ID: 5387527
    [No Abstract]   [Full Text] [Related]  

  • 7. Conversion of peanut trypsin-chymotrypsin inhibitor B-III to a chymotrypsin inhibitor by deimination of the P1 arginine residues in two reactive sites.
    Kurokawa T; Hara S; Takahara H; Sugawara K; Ikenaka T
    J Biochem; 1987 Jun; 101(6):1361-7. PubMed ID: 3667552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin reactivity site of the Vicia angustifolia proteinase inhibitor.
    Abe O; Shimokawa Y; Araki T; Kuromizu K
    J Biochem; 1978 Jun; 83(6):1749-56. PubMed ID: 670165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and partial characterization of the trypsin inhibitor from the seeds of Brassica oleracea var. sabellica.
    Wilimowska-Pelc A
    Acta Biochim Pol; 1985; 32(4):351-61. PubMed ID: 3832704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-bond hydrolysis equilibria in the antitrypsin site of lima bean protease inhibitor.
    Krahn J; Stevens FC
    Biochemistry; 1973 Mar; 12(7):1330-5. PubMed ID: 4735300
    [No Abstract]   [Full Text] [Related]  

  • 11. The amino acid sequence and reactive site of a single-headed trypsin inhibitor from wheat endosperm.
    Poerio E; Caporale C; Carrano L; Caruso C; Vacca F; Buonocore V
    J Protein Chem; 1994 Feb; 13(2):187-94. PubMed ID: 8060492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and activities of the trypsin-modified Vicia angustifolia proteinase inhibitor lacking carboxyl-terminal hexapeptide.
    Abe O; Shimokawa Y; Ohata J; Kuromizu K
    Biochim Biophys Acta; 1979 May; 568(1):71-9. PubMed ID: 36167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical replacement of P1' arginine residue at the first reactive site of peanut protease inhibitor B-III.
    Kurokawa T; Hara S; Norioka S; Teshima T; Ikenaka T
    J Biochem; 1987 Mar; 101(3):723-8. PubMed ID: 3597350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of guanidinated lima bean inhibitor with trypsin.
    Steiner RF; Horan C; Lunasin A
    FEBS Lett; 1973 Dec; 38(1):106-11. PubMed ID: 4772684
    [No Abstract]   [Full Text] [Related]  

  • 15. Primary structure of ascidian trypsin inhibitors in the hemolymph of a solitary ascidian, Halocynthia roretzi.
    Kumazaki T; Hoshiba N; Yokosawa H; Ishii S
    J Biochem; 1990 Mar; 107(3):409-13. PubMed ID: 2341375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the reactive site of ascidian trypsin inhibitor.
    Kumazaki T; Ishii S; Yokosawa H
    J Biochem; 1994 Oct; 116(4):787-93. PubMed ID: 7883752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modifications of ribonuclease U1.
    Hashimoto J; Takahashi K
    J Biochem; 1977 Apr; 81(4):1175-80. PubMed ID: 18450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis-resynthesis equilibrium of the lysine-15--alanine-16 peptide bond in bovine trypsin inhibitor (Kunitz).
    Tschesche H; Kupfer S
    Hoppe Seylers Z Physiol Chem; 1976 Jun; 357(6):769-76. PubMed ID: 8370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural plant enzyme inhibitors. Characterization of an unusual alpha-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.).
    Shivaraj B; Pattabiraman TN
    Biochem J; 1981 Jan; 193(1):29-36. PubMed ID: 6796040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal mobility of reactive-site-hydrolyzed recombinant Cucurbita maxima trypsin inhibitor-V characterized by NMR spectroscopy: evidence for differential stabilization of newly formed C- and N-termini.
    Liu J; Prakash O; Huang Y; Wen L; Wen JJ; Huang JK; Krishnamoorthi R
    Biochemistry; 1996 Sep; 35(38):12503-10. PubMed ID: 8823186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.