These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14127579)

  • 21. Pyruvate kinase from Lactobacillus bulgaricus: possible regulation by competition between strong and weak effectors.
    Le Bras G; Garel JR
    Biochimie; 1993; 75(9):797-802. PubMed ID: 8274531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LACTATE-DEGRADING SYSTEM IN BUTYRIBACTERIUM RETTGERI SUBJECT TO GLUCOSE REPRESSION.
    WITTENBERGER CL; HAAF AS
    J Bacteriol; 1964 Oct; 88(4):896-903. PubMed ID: 14219052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.
    Kaup B; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):333-9. PubMed ID: 14586579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of D-mannitol to D-ribose: a newly discovered pathway in Escherichia coli.
    Rosenberg H; Hardy CM
    J Bacteriol; 1984 Apr; 158(1):69-72. PubMed ID: 6201477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius.
    Saha BC
    Biotechnol Prog; 2004; 20(2):537-42. PubMed ID: 15059000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus.
    Kalfas S; Takahashi N; Yamada T
    Oral Microbiol Immunol; 1994 Dec; 9(6):372-5. PubMed ID: 7870473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chirality of the hydrogen transfer to the coenzyme catalyzed by ribitol dehydrogenase from Klebsiella pneumoniae and D-mannitol 1-phosphate dehydrogenase from Escherichia coli.
    Alizade MA; Gaede K; Brendel K
    Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1163-9. PubMed ID: 185137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversal of the mannitol-sorbitol diauxie in Escherichia coli.
    Lengeler J; Lin EC
    J Bacteriol; 1972 Nov; 112(2):840-8. PubMed ID: 4563979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ENANTIOMORPHIC MONOTRITIATED PRIMARY CARBINOLS OF FRUCTOSE 6-PHOSPHATE: THEIR INTRACELLULAR GENERATION AND METABOLISM BY RAT LIVER SLICES.
    BLOOM B
    J Biol Chem; 1964 Jul; 239():2102-5. PubMed ID: 14209933
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of D-mannitol 1-phosphate.
    Krahulec S; Armao GC; Weber H; Klimacek M; Nidetzky B
    Carbohydr Res; 2008 Jul; 343(9):1414-23. PubMed ID: 18452897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ENZYMIC REMOVAL OF GLUCOSE 6-PHOSPHATE FROM FRUCTOSE 6-PHOSPHATE PREPARATIONS.
    BORREBAEK B; ABRAHAM S; CHAIKOFF IL
    Anal Biochem; 1964 Jul; 8():367-72. PubMed ID: 14214001
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway.
    Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA
    J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of polyol dehydrogenase from Cephalosporium chrysogenus.
    Birken S; Pisano MA
    J Bacteriol; 1976 Jan; 125(1):225-32. PubMed ID: 1374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. D-Mannitol utilization in Salmonella typhimurium.
    Berkowitz D
    J Bacteriol; 1971 Jan; 105(1):232-40. PubMed ID: 4322346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. INDUCTION AND REPRESSION OF L-ARABINOSE ISOMERASE IN LACTOBACILLUS PLANTARUM.
    CHAKRAVORTY M
    Biochim Biophys Acta; 1964 Apr; 85():152-61. PubMed ID: 14159293
    [No Abstract]   [Full Text] [Related]  

  • 37. Mannitol Synthesis in Higher Plants : Evidence for the Role and Characterization of a NADPH-Dependent Mannose 6-Phosphate Reductase.
    Loescher WH; Tyson RH; Everard JD; Redgwell RJ; Bieleski RL
    Plant Physiol; 1992 Apr; 98(4):1396-402. PubMed ID: 16668806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isomerase activity of the C-terminal fructose-6-phosphate binding domain of glucosamine-6-phosphate synthase from Escherichia coli.
    Todorova R
    J Enzyme Inhib; 2001 Oct; 16(4):373-80. PubMed ID: 11916143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of mannitol by Coccidioides immitis.
    Lones GW; Peacock C
    J Bacteriol; 1964 May; 87(5):1114-7. PubMed ID: 4289442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.