These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14130771)

  • 21. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Present-day artificial limbs for upper extremity amputees].
    PANON R
    Presse Med (1893); 1962 May; 70():1155. PubMed ID: 14483569
    [No Abstract]   [Full Text] [Related]  

  • 23. Estimation of forces at the interface between an artificial limb and an implant directly fixed into the femur in above-knee amputees.
    Stephenson P; Seedhom BB
    J Orthop Sci; 2002; 7(3):292-7. PubMed ID: 12077652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Equilibrium of the lower limbs and normal gait. Application to prostheses for thigh amputees].
    Perolini C
    Nouv Presse Med; 1973 Feb; 2(7):427-32. PubMed ID: 4688238
    [No Abstract]   [Full Text] [Related]  

  • 25. [A NEW BODY TYPE IN THE CARE OF SMALL CHILDREN WITH ARM PROSTHESIS].
    PETERSEN D
    Z Orthop Ihre Grenzgeb; 1964 Jun; 99():108-10. PubMed ID: 14249695
    [No Abstract]   [Full Text] [Related]  

  • 26. PROSTHETIC TRAINING TECHNIQUES FOR THE BILATERAL UPPER AMELIA. II.
    CARROLL LJ
    Am J Occup Ther; 1964; 18():144-6. PubMed ID: 14181157
    [No Abstract]   [Full Text] [Related]  

  • 27. INCORPORATION OF A QUADRILATERAL ISCHIAL WEIGHT-BEARING THIGH SOCKET INTO A PROSTHESIS FOR THE BELOW-KNEE AMPUTEE.
    CUMMINGS V
    Arch Phys Med Rehabil; 1963 Sep; 44():504-6. PubMed ID: 14050724
    [No Abstract]   [Full Text] [Related]  

  • 28. PROSTHETIC REHABILITATION OF THE LOWER EXTREMITY AMPUTEE WITH VASCULAR DISEASE.
    KOEPKE GH; WOLCOTT LE; HUNTER DC
    Med Bull (Ann Arbor); 1964; 30():113-5. PubMed ID: 14182245
    [No Abstract]   [Full Text] [Related]  

  • 29. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets.
    Cutti AG; Verni G; Migliore GL; Amoresano A; Raggi M
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):61. PubMed ID: 30255808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lower-leg inertial properties in transtibial amputees and control subjects and their influence on the swing phase during gait.
    Selles RW; Korteland S; Van Soest AJ; Bussmann JB; Stam HJ
    Arch Phys Med Rehabil; 2003 Apr; 84(4):569-77. PubMed ID: 12690597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A SYSTEM OF POWERED PROSTHESES FOR SEVERE BILATERAL UPPER LIMB DEFICIENCY.
    SIMPSON DC; LAMB DW
    J Bone Joint Surg Br; 1965 Aug; 47():442-7. PubMed ID: 14341058
    [No Abstract]   [Full Text] [Related]  

  • 33. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BIOMECHANICAL CONSIDERATIONS IN THE DESIGN OF A FUNCTIONAL LONG LEG BRACE.
    ANDERSON MH
    Biomed Sci Instrum; 1963; 1():385-93. PubMed ID: 14174505
    [No Abstract]   [Full Text] [Related]  

  • 35. AN ANALYSIS OF THE PROBLEMS ASSOCIATED WITH THE REHABILITATION OF A SEVERELY DISABLED AMPUTEE.
    LAWRENCE J; CHILDS TF
    Arch Phys Med Rehabil; 1963 Sep; 44():511-5. PubMed ID: 14050726
    [No Abstract]   [Full Text] [Related]  

  • 36. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses.
    Rock CG; Wurdeman SR; Stergiou N; Takahashi KZ
    PLoS One; 2018; 13(10):e0205098. PubMed ID: 30281652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait patterns of above-knee amputees using constant-friction knee components.
    Murray MP; Sepic SB; Gardner GM; Mollinger LA
    Bull Prosthet Res; 1980; 10-34():35-45. PubMed ID: 7260459
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.