These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14133)

  • 1. Alteration of the kinetic parameters for aminoacylation of Escherichia coli formylmethionine transfer RNA by modification of an anticodon base.
    Schulman LH; Pelka H
    J Biol Chem; 1977 Feb; 252(3):814-9. PubMed ID: 14133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification.
    Schulman LH; Pelka H
    Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of anticodon bases in aminoacylation of Escherichia coli methionine transfer RNAs.
    Stern L; Schulman LH
    J Biol Chem; 1977 Sep; 252(18):6403-8. PubMed ID: 330530
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH
    Biochemistry; 1990 Mar; 29(9):2220-5. PubMed ID: 2186810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes.
    Pelka H; Schulman LH
    Biochemistry; 1986 Jul; 25(15):4450-6. PubMed ID: 3092857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible inactivation of Escherichia coli methionyl-tRNA synthetase by covalent attachment of formylmethionine tRNA to the tRNA binding site with a cleavable cross-linker.
    Schulman LH; Valenzuela D; Pelka H
    Biochemistry; 1981 Oct; 20(21):6018-23. PubMed ID: 7030381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of specific lysine residues in E. coli methionyl-tRNA synthetase by crosslinking to E. coli formylmethionine tRNA.
    Valenzuela D; Leon O; Schulman LH
    Biochem Biophys Res Commun; 1984 Mar; 119(2):677-84. PubMed ID: 6424668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y; Blanquet S
    Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg.
    Chakraburtty K
    Nucleic Acids Res; 1975 Oct; 2(10):1793-804. PubMed ID: 1103086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine-395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Kim HY; Demaret JP; Brunie S; Schulman LH
    Biochemistry; 1991 Dec; 30(51):11767-74. PubMed ID: 1751493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function independence of microhelix aminoacylation from anticodon binding in a class I tRNA synthetase.
    Kim S; Schimmel P
    J Biol Chem; 1992 Aug; 267(22):15563-7. PubMed ID: 1639796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the anticodon domain of tRNA(fMet) to Escherichia coli methionyl-tRNA synthetase.
    Meinnel T; Mechulam Y; Blanquet S; Fayat G
    J Mol Biol; 1991 Jul; 220(2):205-8. PubMed ID: 1856854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.