BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1413518)

  • 1. Structural and functional organization of the human endogenous retroviral ERV9 sequences.
    Lania L; Di Cristofano A; Strazzullo M; Pengue G; Majello B; La Mantia G
    Virology; 1992 Nov; 191(1):464-8. PubMed ID: 1413518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family.
    Di Cristofano A; Strazzullo M; Longo L; La Mantia G
    Nucleic Acids Res; 1995 Aug; 23(15):2823-30. PubMed ID: 7659503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and genomic mapping of chimeric ERV9 endogenous retroviruses-host gene transcripts.
    Strazzullo M; Parisi T; Di Cristofano A; Rocchi M; La Mantia G
    Gene; 1998 Jan; 206(1):77-83. PubMed ID: 9461418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of regulatory elements within the minimal promoter region of the human endogenous ERV9 proviruses: accurate transcription initiation is controlled by an Inr-like element.
    La Mantia G; Majello B; Di Cristofano A; Strazzullo M; Minchiotti G; Lania L
    Nucleic Acids Res; 1992 Aug; 20(16):4129-36. PubMed ID: 1508707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the human endogenous ERV9 proviruses promoter region.
    Strazzullo M; Majello B; Lania L; La Mantia G
    Virology; 1994 May; 200(2):686-95. PubMed ID: 8178453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells.
    La Mantia G; Maglione D; Pengue G; Di Cristofano A; Simeone A; Lanfrancone L; Lania L
    Nucleic Acids Res; 1991 Apr; 19(7):1513-20. PubMed ID: 2027759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobilization of an ERV9 human endogenous retroviral element during primate evolution.
    Di Cristofano A; Strazzullo M; Parisi T; La Mantia G
    Virology; 1995 Oct; 213(1):271-5. PubMed ID: 7483274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyadenylation function and sequence variability of the long terminal repeats of the human endogenous retrovirus-like family RTVL-H.
    Mager DL
    Virology; 1989 Dec; 173(2):591-9. PubMed ID: 2596030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of the unusually short long terminal repeats and their adjacent regions of a novel endogenous avian retrovirus.
    Boyce-Jacino MT; Resnick R; Faras AJ
    Virology; 1989 Nov; 173(1):157-66. PubMed ID: 2815581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription termination and polyadenylation in retroviruses.
    Guntaka RV
    Microbiol Rev; 1993 Sep; 57(3):511-21. PubMed ID: 7902524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The long terminal repeat of feline endogenous RD-114 retroviral DNAs: analysis of transcription regulatory activity and nucleotide sequence.
    Spodick DA; Ghosh AK; Parimoo S; Roy-Burman P
    Virus Res; 1988 Feb; 9(2-3):263-83. PubMed ID: 2833049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and analysis of a rat genomic clone containing a long terminal repeat with high similarity to the oncomodulin mRNA leader sequence.
    Furter CS; Heizmann CW; Berchtold MW
    J Biol Chem; 1989 Nov; 264(31):18276-9. PubMed ID: 2681194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic distribution and transcription of solitary HERV-K LTRs.
    Leib-Mösch C; Haltmeier M; Werner T; Geigl EM; Brack-Werner R; Francke U; Erfle V; Hehlmann R
    Genomics; 1993 Nov; 18(2):261-9. PubMed ID: 8288228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary conservation of orthoretroviral long terminal repeats (LTRs) and ab initio detection of single LTRs in genomic data.
    Benachenhou F; Jern P; Oja M; Sperber G; Blikstad V; Somervuo P; Kaski S; Blomberg J
    PLoS One; 2009; 4(4):e5179. PubMed ID: 19365549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta.
    Goodchild NL; Wilkinson DA; Mager DL
    Gene; 1992 Nov; 121(2):287-94. PubMed ID: 1446826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that a major class of mouse endogenous long terminal repeats (LTRs) resulted from recombination between exogenous retroviral LTRs and similar LTR-like elements (LTR-IS).
    Schmidt M; Glöggler K; Wirth T; Horak I
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6696-700. PubMed ID: 6093113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain of Sp1 sites and loss of repressor sequences associated with a young, transcriptionally active subset of HERV-H endogenous long terminal repeats.
    Nelson DT; Goodchild NL; Mager DL
    Virology; 1996 Jun; 220(1):213-8. PubMed ID: 8659116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene.
    Feuchter-Murthy AE; Freeman JD; Mager DL
    Nucleic Acids Res; 1993 Jan; 21(1):135-43. PubMed ID: 8382789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of endogenous retroviral sequences based on modular organization: proviral structure at the SSAV1 locus.
    Blusch JH; Haltmeier M; Frech K; Sander I; Leib-Mösch C; Brack-Werner R; Werner T
    Genomics; 1997 Jul; 43(1):52-61. PubMed ID: 9226372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.
    Sokol M; Jessen KM; Pedersen FS
    APMIS; 2016; 124(1-2):127-39. PubMed ID: 26818267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.