These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 141424)
61. [MORPHOLOGICAL CHANGES IN EXPERIMENTAL DIPHTHERIA INTOXICATION IN ANIMALS WITH DIFFERENT TYPES OF NERVOUS SYSTEMS]. SKORODYMOVA IV; AMIANTOVA LD Zh Mikrobiol Epidemiol Immunobiol; 1963 May; 40():143-7. PubMed ID: 14077129 [No Abstract] [Full Text] [Related]
62. Resistance of exotoxin A to purified Pseudomonas proteolytic enzymes. Jagger K; Nickol MM; Saelinger CB Infect Immun; 1980 Jun; 28(3):746-52. PubMed ID: 6156907 [TBL] [Abstract][Full Text] [Related]
63. Enhancement by cytochalasin B of ouabain-stimulated catecholamine secretion from cultured bovine adrenal chromaffin cells: possible relation to alteration in Na+/K(+)-pump activity. Morita K; Hamano S; Oka M; Yoshizumi M Cell Mol Neurobiol; 1990 Dec; 10(4):525-37. PubMed ID: 1965424 [TBL] [Abstract][Full Text] [Related]
64. A Na+K+-activated Mg2+-dependent ATPase released from Proteus L-form membrane. Monteil H; Schoun J; Guinard M Eur J Biochem; 1974 Feb; 41(3):525-32. PubMed ID: 4274111 [No Abstract] [Full Text] [Related]
65. [On the problem of toxinogenicity of diphtherial cultures isolated from patients and bacterial carriers]. IAGNIATINSKAIA EG Zh Mikrobiol Epidemiol Immunobiol; 1959 Sep; 30():23-5. PubMed ID: 14405758 [No Abstract] [Full Text] [Related]
66. Sodium fluoride mimics the effect of prostaglandin E2 on catecholamine release from bovine adrenal chromaffin cells. Ito S; Negishi M; Mochizuki-Oda N; Yokohama H; Hayaishi O J Neurochem; 1991 Jan; 56(1):44-51. PubMed ID: 1898968 [TBL] [Abstract][Full Text] [Related]
67. Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa. Vasil ML; Kabat D; Iglewski BH Infect Immun; 1977 Apr; 16(1):353-61. PubMed ID: 406204 [TBL] [Abstract][Full Text] [Related]
68. [DETERMINATION OF THE TOXIGENICITY OF DIPHTHERIA BACTERIA IN TISSUE CULTURE]. GALUNINA ZI Lab Delo; 1964; 10():176-8. PubMed ID: 14141944 [No Abstract] [Full Text] [Related]
69. Structure-function analyses of diphtheria toxin by use of monoclonal antibodies. Rolf JM; Eidels L Infect Immun; 1993 Mar; 61(3):994-1003. PubMed ID: 7679377 [TBL] [Abstract][Full Text] [Related]
70. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. Draper RK; Simon MI J Cell Biol; 1980 Dec; 87(3 Pt 1):849-54. PubMed ID: 7462326 [TBL] [Abstract][Full Text] [Related]
71. Enhanced internalization of ricin in nigericin-pretreated Chinese hamster ovary cells. Ray B; Wu HC Mol Cell Biol; 1981 Jun; 1(6):560-7. PubMed ID: 6965109 [TBL] [Abstract][Full Text] [Related]
72. Enhancement of cytotoxicities of ricin and Pseudomonas toxin in Chinese hamster ovary cells by nigericin. Ray B; Wu HC Mol Cell Biol; 1981 Jun; 1(6):552-9. PubMed ID: 6965108 [TBL] [Abstract][Full Text] [Related]
73. Internalization of ricin in Chinese hamster ovary cells. Ray B; Wu HC Mol Cell Biol; 1981 Jun; 1(6):544-51. PubMed ID: 6965107 [TBL] [Abstract][Full Text] [Related]
74. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Didsbury JR; Moehring JM; Moehring TJ Mol Cell Biol; 1983 Jul; 3(7):1283-94. PubMed ID: 6888380 [TBL] [Abstract][Full Text] [Related]
75. Effect of polymers of L-lysine on the cytotoxic action of diphtheria toxin. Eidels L; Hart DA Infect Immun; 1982 Sep; 37(3):1054-8. PubMed ID: 6813267 [TBL] [Abstract][Full Text] [Related]