These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14151065)

  • 1. ROOT NODULE SYMBIOSIS. I. ENDOPHYTE OF MYRICA CERIFERA L.
    SILVER WS
    J Bacteriol; 1964 Feb; 87(2):416-21. PubMed ID: 14151065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEAF-NODULE SYMBIOSIS. I. ENDOPHYTE OF PSYCHOTRIA BACTERIOPHILA.
    CENTIFANTO YM; SILVER WS
    J Bacteriol; 1964 Sep; 88(3):776-81. PubMed ID: 14208518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the Alnus crispa var. mollis Fern. root nodule endophyte.
    Lalonde M; Knowles R
    Can J Microbiol; 1975 Jul; 21(7):1058-80. PubMed ID: 167930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of the isolation of non-infective Alnus crispa var. mollis Fern, nodule endophyte by morphological immunolabelling and whole cell composition studies.
    Lalonde M; Knowles R; Fortin JA
    Can J Microbiol; 1975 Dec; 21(12):1901-20. PubMed ID: 1220859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ELECTRON MICROSCOPY OF THE ENDOPHYTE OF ALNUS GLUTINOSA.
    BECKING JH; DE BOER WE; HOUWINK AL
    Antonie Van Leeuwenhoek; 1964; 30():343-76. PubMed ID: 14274130
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrastructural and immunological demonstration of the nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by the North-American Alnus crispa var. mollis Fern. root nodule endophyte.
    Lalonde M; Quispel A
    Can J Microbiol; 1977 Nov; 23(11):1529-47. PubMed ID: 922604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogenase in actinorhizal root nodules and root nodule homogenates.
    Benson DR; Arp DJ; Burris RH
    J Bacteriol; 1980 Apr; 142(1):138-44. PubMed ID: 6989799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ELECTRON MICROSCOPY OF INFECTION THREADS AND BACTERIA IN YOUNG ROOT NODULES OF MEDICAGO SATIVA.
    JORDAN DC; GRINYER I; COULTER WH
    J Bacteriol; 1963 Jul; 86(1):125-37. PubMed ID: 14051804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1 (Actinomycetales).
    Baker D; Newcomb W; Torrey JG
    Can J Microbiol; 1980 Sep; 26(9):1072-89. PubMed ID: 7459722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an effective actinorhizal microsymbiont, Frankia sp. AvcI1 (Actinomycetales).
    Baker D; Torrey JG
    Can J Microbiol; 1980 Sep; 26(9):1066-71. PubMed ID: 7459721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria.
    Valdez Barillas JR; Paschke MW; Ralphs MH; Child RD
    Ecology; 2007 Jul; 88(7):1850-6. PubMed ID: 17645031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root nodule bacteria from Clitoria ternatea L. are putative invasive nonrhizobial endophytes.
    Aeron A; Chauhan PS; Dubey RC; Maheshwari DK; Bajpai VK
    Can J Microbiol; 2015 Feb; 61(2):131-42. PubMed ID: 25619106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria.
    Zgadzaj R; James EK; Kelly S; Kawaharada Y; de Jonge N; Jensen DB; Madsen LH; Radutoiu S
    PLoS Genet; 2015 Jun; 11(6):e1005280. PubMed ID: 26042417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens.
    Skiada V; Faccio A; Kavroulakis N; Genre A; Bonfante P; Papadopoulou KK
    Fungal Genet Biol; 2019 Jun; 127():60-74. PubMed ID: 30872027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Burkholderia in the seeds of Psychotria punctata (Rubiaceae) - Microscopic evidence for vertical transmission in the leaf nodule symbiosis.
    Sinnesael A; Eeckhout S; Janssens SB; Smets E; Panis B; Leroux O; Verstraete B
    PLoS One; 2018; 13(12):e0209091. PubMed ID: 30550604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean.
    Tavares MJ; Nascimento FX; Glick BR; Rossi MJ
    Lett Appl Microbiol; 2018 Mar; 66(3):252-259. PubMed ID: 29327464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reinvestigation of the root-nodules of species of Elaeagnus, Hippophae, Alnus and Myrica, with special reference to the morphology and life histories of the causative organisms.
    HAWKER LE; FRAYMOUTH J
    J Gen Microbiol; 1951 May; 5(2):369-86. PubMed ID: 14832426
    [No Abstract]   [Full Text] [Related]  

  • 18. Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants.
    Nouioui I; Ghodhbane-Gtari F; Del Carmen Montero-Calasanz M; Rohde M; Tisa LS; Gtari M; Klenk HP
    Antonie Van Leeuwenhoek; 2017 Mar; 110(3):313-320. PubMed ID: 27830471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroalga-associated bacterial endophyte bioactive secondary metabolites twinning: Cystoseira myrica and its associated Catenococcus thiocycli QCm as a model.
    Hagaggi NSA; Abdul-Raouf UM
    World J Microbiol Biotechnol; 2022 Aug; 38(11):205. PubMed ID: 36006544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MICROMORPHOLOGY OF DERMATOPHILUS CONGOLENSIS.
    GORDON MA; EDWARDS MR
    J Bacteriol; 1963 Nov; 86(5):1101-15. PubMed ID: 14080778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.