These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 1415186)

  • 1. 5-Aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells.
    Bottomley SS; Healy HM; Brandenburg MA; May BK
    Am J Hematol; 1992 Oct; 41(2):76-83. PubMed ID: 1415186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase.
    Cox TC; Bottomley SS; Wiley JS; Bawden MJ; Matthews CS; May BK
    N Engl J Med; 1994 Mar; 330(10):675-9. PubMed ID: 8107717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridoxine refractory X-linked sideroblastic anemia caused by a point mutation in the erythroid 5-aminolevulinate synthase gene.
    Furuyama K; Fujita H; Nagai T; Yomogida K; Munakata H; Kondo M; Kimura A; Kuramoto A; Hayashi N; Yamamoto M
    Blood; 1997 Jul; 90(2):822-30. PubMed ID: 9226183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular defects of erythroid 5-aminolevulinate synthase in X-linked sideroblastic anemia.
    Bottomley SS; May BK; Cox TC; Cotter PD; Bishop DF
    J Bioenerg Biomembr; 1995 Apr; 27(2):161-8. PubMed ID: 7592563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia.
    Furuyama K; Sassa S
    J Clin Invest; 2000 Mar; 105(6):757-64. PubMed ID: 10727444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis.
    May BK; Bhasker CR; Bawden MJ; Cox TC
    Mol Biol Med; 1990 Oct; 7(5):405-21. PubMed ID: 2095458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late-onset X-linked sideroblastic anemia. Missense mutations in the erythroid delta-aminolevulinate synthase (ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts.
    Cotter PD; May A; Fitzsimons EJ; Houston T; Woodcock BE; al-Sabah AI; Wong L; Bishop DF
    J Clin Invest; 1995 Oct; 96(4):2090-6. PubMed ID: 7560104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models for X-linked sideroblastic anemia.
    Yamamoto M; Nakajima O
    Int J Hematol; 2000 Aug; 72(2):157-64. PubMed ID: 11039663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythroid 5-aminolevulinate synthase and X-linked sideroblastic anemia.
    Ferreira GC
    J Fla Med Assoc; 1993 Jul; 80(7):481-3. PubMed ID: 8089650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mutation in erythroid-specific delta-aminolevulinate synthase as the cause of X-linked sideroblastic anemia responsive to pyridoxine.
    Kucerova J; Horvathova M; Mojzikova R; Belohlavkova P; Cermak J; Divoky V
    Acta Haematol; 2011; 125(4):193-7. PubMed ID: 21252495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel mutation of the erythroid-specific gamma-Aminolevulinate synthase gene in a patient with non-inherited pyridoxine-responsive sideroblastic anemia.
    Harigae H; Furuyama K; Kudo K; Hayashi N; Yamamoto M; Sassa S; Sasaki T
    Am J Hematol; 1999 Oct; 62(2):112-4. PubMed ID: 10577279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R411C mutation of the ALAS2 gene encodes a pyridoxine-responsive enzyme with low activity.
    Furuyama K; Uno R; Urabe A; Hayashi N; Fujita H; Kondo M; Sassa S; Yamamoto M
    Br J Haematol; 1998 Dec; 103(3):839-41. PubMed ID: 9858242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple mechanisms for hereditary sideroblastic anemia.
    Furuyama K; Sassa S
    Cell Mol Biol (Noisy-le-grand); 2002 Feb; 48(1):5-10. PubMed ID: 11929048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture.
    Ibraham NG; Lutton JD; Hoffman R; Levere RD
    J Lab Clin Med; 1985 May; 105(5):593-600. PubMed ID: 3989352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haem synthesis in sideroblastic anaemia.
    Konopka L; Hoffbrand AV
    Br J Haematol; 1979 May; 42(1):73-83. PubMed ID: 465361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis.
    Sadlon TJ; Dell'Oso T; Surinya KH; May BK
    Int J Biochem Cell Biol; 1999 Oct; 31(10):1153-67. PubMed ID: 10582344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA.
    Cox TC; Bawden MJ; Martin A; May BK
    EMBO J; 1991 Jul; 10(7):1891-902. PubMed ID: 2050125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress of study on sideroblastic anemia and its possible gene therapy--review].
    Wang YQ; Zhu P
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Jun; 13(3):524-8. PubMed ID: 15972158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficient heme and globin synthesis in embryonic stem cells lacking the erythroid-specific delta-aminolevulinate synthase gene.
    Harigae H; Suwabe N; Weinstock PH; Nagai M; Fujita H; Yamamoto M; Sassa S
    Blood; 1998 Feb; 91(3):798-805. PubMed ID: 9446639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.