BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1415675)

  • 1. Organic osmolytes increase cytoplasmic viscosity in kidney cells.
    Periasamy N; Kao HP; Fushimi K; Verkman AS
    Am J Physiol; 1992 Oct; 263(4 Pt 1):C901-7. PubMed ID: 1415675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic viscosity near the cell plasma membrane: measurement by evanescent field frequency-domain microfluorimetry.
    Bicknese S; Periasamy N; Shohet SB; Verkman AS
    Biophys J; 1993 Sep; 65(3):1272-82. PubMed ID: 8241407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery.
    Swaminathan R; Bicknese S; Periasamy N; Verkman AS
    Biophys J; 1996 Aug; 71(2):1140-51. PubMed ID: 8842251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity.
    Dix JA; Verkman AS
    Biophys J; 1990 Feb; 57(2):231-40. PubMed ID: 2317548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion.
    Swaminathan R; Hoang CP; Verkman AS
    Biophys J; 1997 Apr; 72(4):1900-7. PubMed ID: 9083693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of the translational mobility of a small solute in cell cytoplasm.
    Kao HP; Abney JR; Verkman AS
    J Cell Biol; 1993 Jan; 120(1):175-84. PubMed ID: 8416987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry.
    Fushimi K; Verkman AS
    J Cell Biol; 1991 Feb; 112(4):719-25. PubMed ID: 1993739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of endothelin-1 on calcium homeostasis in Madin-Darby canine kidney tubule cells.
    Parkinson NA; James AF; Hendry BM
    Nephrol Dial Transplant; 1996 Aug; 11(8):1532-7. PubMed ID: 8856206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of chloride transport across the rabbit cortical collecting tubule.
    Hanley MJ; Kokko JP
    J Clin Invest; 1978 Jul; 62(1):39-44. PubMed ID: 659636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond rotation of small polar fluorophores in the cytosol of sea urchin eggs.
    Periasamy N; Armijo M; Verkman AS
    Biochemistry; 1991 Dec; 30(51):11836-41. PubMed ID: 1751500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium.
    Bagnasco SM; Montrose MH; Handler JS
    Am J Physiol; 1993 May; 264(5 Pt 1):C1165-70. PubMed ID: 8498477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of Madin-Darby canine kidney cells to hypertonic medium: an electron microprobe analysis.
    Borgmann S; Dörge A
    Kidney Int Suppl; 1998 Sep; 67():S133-5. PubMed ID: 9736268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique.
    Kuwahara M; Berry CA; Verkman AS
    Biophys J; 1988 Oct; 54(4):595-602. PubMed ID: 3224145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule.
    Weiner ID; Hamm LL
    Am J Physiol; 1989 May; 256(5 Pt 2):F957-64. PubMed ID: 2719125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships.
    Garcia-Perez A; Smith WL
    J Clin Invest; 1984 Jul; 74(1):63-74. PubMed ID: 6588055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between vasopressin-sensitive water transport and plasma membrane fluidity in kidney collecting tubule.
    Fushimi K; Verkman AS
    Am J Physiol; 1991 Jan; 260(1 Pt 1):C1-8. PubMed ID: 1987773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule.
    Kuwahara M; Verkman AS
    Biophys J; 1988 Oct; 54(4):587-93. PubMed ID: 3224144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process?
    Schepers MS; Duim RA; Asselman M; Romijn JC; Schröder FH; Verkoelen CF
    Kidney Int; 2003 Aug; 64(2):493-500. PubMed ID: 12846744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescein transport in isolated proximal tubules in vitro: epifluorometric analysis.
    Sullivan LP; Grantham JA; Rome L; Wallace D; Grantham JJ
    Am J Physiol; 1990 Jan; 258(1 Pt 2):F46-51. PubMed ID: 2301596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey of osmolytes in renal cell lines.
    Nakanishi T; Balaban RS; Burg MB
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C181-91. PubMed ID: 3407763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.