BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1415881)

  • 1. The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis.
    Graf BK; Fujisaki K; Vanderby R; Vailas AC
    Am J Sports Med; 1992; 20(4):401-5. PubMed ID: 1415881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis.
    Tohyama H; Yasuda K
    J Biomech Eng; 2000 Dec; 122(6):594-9. PubMed ID: 11192379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical and histological properties of the canine patellar tendon after removal of its medial third.
    Linder LH; Sukin DL; Burks RT; Haut RC
    Am J Sports Med; 1994; 22(1):136-42. PubMed ID: 8129097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patellar tendon augmentation after removal of its central third limits joints tissue changes.
    Atkinson PJ; Oyen-Tiesma M; Zukosky DK; DeCamp CE; Mackenzie CD; Haut RC
    J Orthop Res; 1999 Jan; 17(1):28-36. PubMed ID: 10073644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of collagen fascicles from in situ frozen and stress-shielded rabbit patellar tendons.
    Yamamoto E; Tokura S; Yamamoto N; Hayashi K
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):284-91. PubMed ID: 10675670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons.
    Tsuchida T; Yasuda K; Kaneda K; Hayashi K; Yamamoto N; Miyakawa K; Tanaka K
    J Orthop Res; 1997 Nov; 15(6):904-10. PubMed ID: 9497817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytokine-induced tendinitis: a preliminary study in rabbits.
    Stone D; Green C; Rao U; Aizawa H; Yamaji T; Niyibizi C; Carlin G; Woo SL
    J Orthop Res; 1999 Mar; 17(2):168-77. PubMed ID: 10221832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of stress shielding of the rabbit patellar tendon depend on the degree of stress reduction.
    Majima T; Yasuda K; Fujii T; Yamamoto N; Hayashi K; Kaneda K
    J Orthop Res; 1996 May; 14(3):377-83. PubMed ID: 8676249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue shrinkage with the holmium:yttrium aluminum garnet laser. A postoperative assessment of tissue length, stiffness, and structure.
    Schaefer SL; Ciarelli MJ; Arnoczky SP; Ross HE
    Am J Sports Med; 1997; 25(6):841-8. PubMed ID: 9397275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patellar tendon and infrapatellar fat pad healing after harvest of an ACL graft.
    Atkinson TS; Atkinson PJ; Mendenhall HV; Haut RC
    J Surg Res; 1998 Sep; 79(1):25-30. PubMed ID: 9735236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and histological changes in the patellar tendon after in situ freezing An experimental study in rabbits.
    Ohno K; Yasuda K; Yamamoto N; Kaneda K; Hayashi K
    Clin Biomech (Bristol, Avon); 1996 Jun; 11(4):207-213. PubMed ID: 11415622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterioration of mechanical properties of the autograft in controlled stress-shielded augmentation procedures. An experimental study with rabbit patellar tendon.
    Majima T; Yasuda K; Yamamoto N; Kaneda K; Hayashi K
    Am J Sports Med; 1994; 22(6):821-9. PubMed ID: 7856807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of stress deprivation on mechanical properties of the in situ frozen-thawed semitendinosus tendon in rabbits.
    Hara N; Yasuda K; Kimura S; Majima T; Minami A; Tohyama H
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):60-8. PubMed ID: 12527248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics and integrin expression of fibroblasts infiltrating devitalised patellar tendons are different from those of intrinsic fibroblasts.
    Ikema Y; Tohyama H; Nakamura H; Kanaya F; Yasuda K
    J Bone Joint Surg Br; 2005 Dec; 87(12):1689-93. PubMed ID: 16326888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study.
    Arnoczky SP; Warren RF; Ashlock MA
    J Bone Joint Surg Am; 1986 Mar; 68(3):376-85. PubMed ID: 3949832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanical studies of change in the patellar tendon after transplant removal].
    Scherer MA; Früh HJ; Ascherl R; Siebels W
    Aktuelle Traumatol; 1993 May; 23(3):129-32. PubMed ID: 8101030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allograft anterior cruciate ligament reconstruction in a sheep model. The effect of synthetic augmentation.
    Amendola A; Fowler P
    Am J Sports Med; 1992; 20(3):336-46. PubMed ID: 1636867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts. A biological and biomechanical evaluation in goats.
    Drez DJ; DeLee J; Holden JP; Arnoczky S; Noyes FR; Roberts TS
    Am J Sports Med; 1991; 19(3):256-63. PubMed ID: 1714244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanics and histopathology of chemically processed patellar tendon allografts for anterior cruciate ligament replacement.
    Zimmerman MC; Contiliano JH; Parsons JR; Prewett A; Billotti J
    Am J Sports Med; 1994; 22(3):378-86. PubMed ID: 8037280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon.
    Uchida H; Tohyama H; Nagashima K; Ohba Y; Matsumoto H; Toyama Y; Yasuda K
    J Biomech; 2005 Apr; 38(4):791-8. PubMed ID: 15713300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.