These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1416022)

  • 1. Two-dimensional differential scanning calorimetry: simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis.
    Straume M; Freire E
    Anal Biochem; 1992 Jun; 203(2):259-68. PubMed ID: 1416022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of RNase A/2'-cytidine monophosphate binding affinity and enthalpy by a global fit of thermal unfolding curves.
    Jones CL; Fish F; Muccio DD
    Anal Biochem; 2002 Mar; 302(2):184-90. PubMed ID: 11878796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A.
    Catanzano F; Graziano G; Capasso S; Barone G
    Protein Sci; 1997 Aug; 6(8):1682-93. PubMed ID: 9260280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A.
    Eftink MR; Anusiem AC; Biltonen RL
    Biochemistry; 1983 Aug; 22(16):3884-96. PubMed ID: 6615806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cytidine 3'-monophosphate and uridine 3'-monophosphate with ribonuclease a at the denaturation temperature.
    Schwarz FP
    Biochemistry; 1988 Nov; 27(22):8429-36. PubMed ID: 3242592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of strong to ultratight protein interactions using differential scanning calorimetry.
    Brandts JF; Lin LN
    Biochemistry; 1990 Jul; 29(29):6927-40. PubMed ID: 2204424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding energetics of ligand binding proteins. I. Theoretical model.
    Rösgen J; Hinz HJ
    J Mol Biol; 2001 Mar; 306(4):809-24. PubMed ID: 11243790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry.
    Baker BM; Murphy KP
    Biophys J; 1996 Oct; 71(4):2049-55. PubMed ID: 8889179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat capacity change for ribonuclease A folding.
    Pace CN; Grimsley GR; Thomas ST; Makhatadze GI
    Protein Sci; 1999 Jul; 8(7):1500-4. PubMed ID: 10422839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The salt-dependence of a protein-ligand interaction: ion-protein binding energetics.
    Waldron TT; Schrift GL; Murphy KP
    J Mol Biol; 2005 Feb; 346(3):895-905. PubMed ID: 15713470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Unfolding-Thermodynamic Perspectives and Unfolding Models.
    Seelig J; Seelig A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent isotope effect and protein stability.
    Makhatadze GI; Clore GM; Gronenborn AM
    Nat Struct Biol; 1995 Oct; 2(10):852-5. PubMed ID: 7552708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and oligosaccharide binding of the N1 cellulose-binding domain of Cellulomonas fimi endoglucanase CenC.
    Creagh AL; Koska J; Johnson PE; Tomme P; Joshi MD; McIntosh LP; Kilburn DG; Haynes CA
    Biochemistry; 1998 Mar; 37(10):3529-37. PubMed ID: 9521674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpy arrays.
    Torres FE; Kuhn P; De Bruyker D; Bell AG; Wolkin MV; Peeters E; Williamson JR; Anderson GB; Schmitz GP; Recht MI; Schweizer S; Scott LG; Ho JH; Elrod SA; Schultz PG; Lerner RA; Bruce RH
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9517-22. PubMed ID: 15210951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric methods for interpreting protein-ligand interactions.
    Fisher HF; Singh N
    Methods Enzymol; 1995; 259():194-221. PubMed ID: 8538455
    [No Abstract]   [Full Text] [Related]  

  • 18. Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A.
    Faria TQ; Knapp S; Ladenstein R; Maçanita AL; Santos H
    Chembiochem; 2003 Aug; 4(8):734-41. PubMed ID: 12898624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the folding/unfolding energetics of marginally stable proteins using differential scanning calorimetry.
    Haynie DT; Freire E
    Anal Biochem; 1994 Jan; 216(1):33-41. PubMed ID: 8135363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins.
    Celej MS; Dassie SA; González M; Bianconi ML; Fidelio GD
    Anal Biochem; 2006 Mar; 350(2):277-84. PubMed ID: 16434020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.