BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 14163920)

  • 1. BRAIN STEM ELECTRICAL ACTIVITY DURING DEEP SLEEP.
    BROOKS DC; BIZZI E
    Arch Ital Biol; 1963 Oct; 101():648-65. PubMed ID: 14163920
    [No Abstract]   [Full Text] [Related]  

  • 2. Pontine Waves Accompanied by Short Hippocampal Sharp Wave-Ripples During Non-rapid Eye Movement Sleep.
    Tsunematsu T; Matsumoto S; Merkler M; Sakata S
    Sleep; 2023 Sep; 46(9):. PubMed ID: 37478470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus.
    Katsuki F; Gerashchenko D; Brown RE
    Brain Res Bull; 2022 Sep; 187():181-198. PubMed ID: 35850189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional Delta Waves In Human Rapid Eye Movement Sleep.
    Bernardi G; Betta M; Ricciardi E; Pietrini P; Tononi G; Siclari F
    J Neurosci; 2019 Apr; 39(14):2686-2697. PubMed ID: 30737310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a Functional Understanding of PGO Waves.
    Gott JA; Liley DT; Hobson JA
    Front Hum Neurosci; 2017; 11():89. PubMed ID: 28316568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The state of sleep and the current brain paradigm.
    Pigarev IN; Pigareva ML
    Front Syst Neurosci; 2015; 9():139. PubMed ID: 26528146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-neuron activity and eye movements during human REM sleep and awake vision.
    Andrillon T; Nir Y; Cirelli C; Tononi G; Fried I
    Nat Commun; 2015 Aug; 6():7884. PubMed ID: 26262924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial sleep in the context of augmentation of brain function.
    Pigarev IN; Pigareva ML
    Front Syst Neurosci; 2014; 8():75. PubMed ID: 24822040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of sleep and wakefulness.
    Brown RE; Basheer R; McKenna JT; Strecker RE; McCarley RW
    Physiol Rev; 2012 Jul; 92(3):1087-187. PubMed ID: 22811426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waking and dreaming consciousness: neurobiological and functional considerations.
    Hobson JA; Friston KJ
    Prog Neurobiol; 2012 Jul; 98(1):82-98. PubMed ID: 22609044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence.
    Datta S; Maclean RR
    Neurosci Biobehav Rev; 2007; 31(5):775-824. PubMed ID: 17445891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: a mechanism for sleep-dependent plasticity.
    Datta S; Mavanji V; Ulloor J; Patterson EH
    J Neurosci; 2004 Feb; 24(6):1416-27. PubMed ID: 14960614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tribute to Nathaniel Kleitman.
    Siegel JM
    Arch Ital Biol; 2001 Feb; 139(1-2):3-10. PubMed ID: 11256185
    [No Abstract]   [Full Text] [Related]  

  • 14. Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity.
    Datta S
    J Neurosci; 2000 Nov; 20(22):8607-13. PubMed ID: 11069969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation.
    Datta S
    Cell Mol Neurobiol; 1997 Jun; 17(3):341-65. PubMed ID: 9187490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unit responses of the lateral geniculate body to light flashes in free moving unrestrained cats.
    Mukhametov LM; Rizzolatti G
    Experientia; 1968 Sep; 24(9):911. PubMed ID: 5709033
    [No Abstract]   [Full Text] [Related]  

  • 17. Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats.
    Mukhametov LM; Rizzolatti G; Tradardi V
    J Physiol; 1970 Oct; 210(3):651-67. PubMed ID: 5499817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibular input to the lateral geniculate nucleus during desynchronized sleep.
    Pompeiano O; Morrison AR
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1966; 290(3):272-4. PubMed ID: 5234599
    [No Abstract]   [Full Text] [Related]  

  • 19. Primary afferent depolarization of trigeminal fibres induced by stimulation of brain stem and peripheral nerves.
    Baldissera F; Broggi G; Mancia M
    Experientia; 1967 May; 23(5):398-400. PubMed ID: 4863931
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of synchronized sleep upon spontaneous and induced discharges of single units in visual system.
    Sato T; Yamamoto M; Nakahama H
    Exp Brain Res; 1973 Mar; 16(5):533-41. PubMed ID: 4695780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.